راسخون دوشنبه، 16 خرداد 1390 13:05:00

مسیر جاری : صفحه اصلی/مقالات/علم و دانش/علوم فنی و مهندسی/معماری و سازه/طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

دفعات بازدید: 1746 بار

دوشنبه، 16 خرداد 1390

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

دوشنبه، 16 خرداد 1390

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)


 





 
دستاوردهای اخیر در طراحی بهینه ژئوتکنیکی پی های عمیق (2)

استفاده از نتایج آزمایشات درجا (1) در تعیین توان باربری شمع ها
 

به عنوان مکمل روش استاتیکی و با توجه به این که آزمایشات درجای رایج SPT (2) و CPT (3) اطلاعات پیوسته ای از خصوصیات خاک بر حسب عمق فراهم می کنند، می توان از نتایج آن ها که عمدتاً به صورت تجربی می باشد در تعیین توان باربری شمع ها استفاده نمود. از آن جا که در اکثر مطالعات ژئوتکنیکی و شناسایی های محلی مربوط به پروژه های عمرانی استفاده از آزمایش SPT اجتناب ناپذیر است، استفاده از نتایج این آزمایش در تعیین ظرفیت باربری شمع ها مورد توجه مهندسان محاسب می باشد.
در صورت استفاده از نتایج SPT برای ظرفیت باربری شمع، ضریب اطمینان تا 4 توصیه می شود. فرم کلی روابط تعیین ظرفیت باربری شمع ها بر اساس نتایج آزمایش SPT به صورت زیر می باشد:
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2) مقاومت واحد جداره ی شمع بر حسب KPa
A: ضریب تناسب بین مقاومت واحد جداره ای شمع و متوسط مقدار N در جداره ی شمع
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2) مقاومت واحد کف شمع بر حسب MPa
B: ضریب تناسب بین مقاومت واحد کف شمع و متوسط مقدار N در حوالی کف شمع
مقادیر مربوط به فاکتورهای A و B، پیشنهادی توسط برخی محققان در جدول 5 ارائه شده است.
همچنین تغییرات مقاومت های واحد کف و جداری برای یک سری شمع در خاک های مختلف دانه ای بر حسب عمق اندازه گیری شده برای چندین مورد عملی در شکل 3 نشان داده شده است. همان طور که از این شکل پیداست، مقادیر متوسط مقاومت اصطکاکی و جداری شمع با افزایش مقدار N حاصل از آزمایش SPT یا به عبارتی میزان تراکم خاک ها افزایش می یابد.
بر خلاف SPT، استفاده از نتایج آزمایش درجای CPT در تعیین ظرفیت باربری شمع به خصوص در خاک های دانه ای شل و نسبتاً متراکم و همچنین خاک های ریزدانه ی نرم تا سقف بسیار رایج است. به عبارتی می توان از کاربردهای اولیه و مهم CPT به تعیین توان باربری شمع اشاره نمود و آن را با توجه به اندازه گیری مقاومت نوک و جداری حین نفوذ در زمین به عنوان یک مدل فیزیکی از شمع قلمداد کرد. آزمایش نفوذ مخروط به سرعت در حال تبدیل به مشهورترین نوع آزمایش های درجا می باشد. این بدان علت است که CPT یک آزمایش سریع و اقتصادی بوده و به طور پیوسته اطلاعاتی را از لایه بندی زمین شناسی و ارزیابی خصوصیات خاک به دست می دهد. آزمایش با توجه به استاندارد ASTM D-3441 (سیستم های مکانیکی) ASTM D5778 (سیستم های الکتریکی و الکترونیکی) انجام شده و شامل فرستادن میله ی استوانه ای فولادی با نرخ ثابت mm/s 20 به داخل زمین و اندازه گیری مقاومت نفوذی می باشد. پنترومتر استاندارد دارای نوک مخروطی با زاویه ی رأس 60 درجه، قطر بدنه ی 7/35 میلیمتر و غلاف اصطکاکی با سطح مقطع cm2 150 می باشد. مقاومت نوک را با qc و مقاومت جداری را با Fs نشان می دهند. همچنین، استاندارد ASTM قطر بزرگ تر mm 7/43 برای بدنه ی میله را نیز پیشنهاد می نماید (شکل 4).
از آزمایش CPT می توان در رس های بسیار نرم تا ماسه های متراکم استفاده نمود. ولی هنوز این آزمایش برای شن ها یا عوارض سنگی مناسب نمی باشد. علاوه بر این، دقت و توانایی دستگاه های نفوذ مخروطی CPTu در اندازه گیری qc و fs و u به کاربرد این امکان را می دهد که میزان فشار آب حفره ای اضافی شده (u) در طی آزمایش نفوذ مخروط را اندازه گیری نماید. لذا با استفاده از نتایج آزمایش CPTu، می توان ظرفیت باربری شمع را بر مبنای تنش های مؤثر به دست آورد. نمونه ای از دانه های حاصل از CPT در شکل 5 ارائه شده است.
روش های تعین ظرفیت باربری شمع بر اساس نتایج آزمایش CPT و یا دیگر آزمایشات درجا به دو دسته تقسیم می گردند: روش های مستقیم و روش های غیرمستقیم. در روش غیرمستقیم پارامترها و مشخصات مکانیکی خاک از نتایج آزمایش CPT تعیین می گردد، سپس با استفاده از این پارامترها و روابط تحلیل استاتیکی، ظرفیت باربری شمع تعیین می گردد. اما در روش های مستقیم بین نتایج آزمایش CPT و ظرفیت باربری شمع یک رابطه ی مستقیم نتایج آزمایش CPT و ظرفیت باربری شمع یک رابطه ی مستقیم ارائه می گردد. در اغلب این روش ها برای تعیین مقاومت کف شمع از مقادیر مقاومت نوک مربوط به آزمایش CPT یعنی qc استفاده شده است، اما برای تعیین مقاومت واحد جداری شمع، هم از مقادیر مقاومت نوک qc و هم از مقادیر مقاومت اصطکاکی Fs مربوط به آزمایش CPT، استفاده شده است.
بررسی ها توسط (Bruiad, 1988) بر روی 98 مورد عملی و (Eslami & Fellenius, 1997) بر روی 102 مورد عملی نشان می دهد که روش های مستقیم مبنی بر نتایج CPT با دقت مناسب و قابل قبولی ظرفیت باربری شمع ها را پیش بینی می کنند. در جدول 4 تعدادی از روابط ارائه شده برای تعیین ظرفیت باربری یک شمع بر اساس نتایج آزمایش CPT، ارائه شده است.

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

تعیین ظرفیت باربری با روش های استاتیکی
 

آزمایش بارگذاری استاتیکی شمع را می توان مستقیم ترین و کامل ترین روش تعیین ظرفیت باربری یک شمع دانست. به دلیل وجود موارد عدم اطمینان متعدد در روند آنالیز و طراحی شمع ها، انجام شدن این آزمایش بر روی شمع های در ابعاد واقعی به صورت یک امر ضروری در اکثر پروژه های مهم درآمده است. در چنین مواردی به دلیل وجود شرایط واقعی حاکم بر سیستم خاک – شمع، پاسخ سیستم در برابر بار وارده بر شمع، مشابه شرایط واقعی است. عملاً برای پروژه هایی حاوی پی های عمیق که در خاک های مسأله دار اجرا شده، متراژ شمع مصرفی زیاد و نیز پروژه از اهمیت به سزایی برخوردار بوده و یا تجارب کمی از پروژه های مشابه در منطقه در دسترس باشد انجام شدن آزمایش بارگذاری در پروژه اجتناب ناپذیر است.
اهداف آزمایش بارگذاری عبارت اند از:
1- تعیین توان باربری تک شمع و یا گروه
2- تعیین جابه جایی تک شمع و یا گروه تحت بار سرویس
3- کنترل توان باربری مفروض و مقایسه ی آن با مقدار واقعی
4- کسب اطلاعات در خصوص چگونگی مقادیر انتقالی توسط جدار و کف شمع
5- تدقیق و کاهش ضریب اطمینان و صرفه جویی در هزینه ی پی سازی پروژه های کلان
بارگذاری توسط یک جک هیدرولیکی و سیستم بارمرده انجام می شود که در مورد استفاده از جک هیدرولیکی، یک سیستم عکس العملی متشکل از چند شمع کششی، که عکس العمل جک از طریق یک یا دو تیر متقاطع به آن ها منتقل می شود، تأمین می گردد. همچنین سیستم بارگذاری شده باشد. مطابق ASTM-D 1143 ، ظرفیت سیستم کنترل کننده ی عکس العمل جک حداقل 25 درصد بیش از میزان بار وارده بر شمع باید باشد. شکل 6، شمایی از آزمایش بارگذاری استاتیکی بر روی شمع را نشان می دهد.
نتایج به دست آمده از آزمایش بارگذاری شمع به صورت یک نمودار بار –تغییر مکان، همانند شکل 7، ارائه می شود. برای حصول مقاومت نهایی و یا بار مجاز معمولاً نتایج آزمایش بارگذاری تفسیر می گردد. طبق تعریف یک شمع زمانی به گسیختگی کامل می رسد که تحت یک بار ثابت یا افزایش اندک بار، مقدار جابه جایی شمع به سرعت زیاد شود. (منحنی A از شکل 7) اما در اغلب اوقات، نمودار بار نشست به دست آمده از آزمایش بارگذاری به گونه ای است که تعریف فوق را برای ظرفیت باربری نهایی ارضا نمی کند (منحنی B از شکل 7). در چنین حالت هایی است که مسأله ی تفسیر نتایج آزمایش بارگذاری مطرح می گردد.
یکی از معمول ترین روش های تعیین ظرفیت باربری نهایی شمع، در این حالت ها بدین صورت است که دو بخش مستقیم نمودار بار – نشست را که بخش اول آن نشان دهنده ی تغییر شکل الاستیک و بخش دوم آن مؤید تغییر شکل پلاستیک شمع است، امتداد می دهند که محل تلاقی این دو خط، ظرفیت باربری نهایی شمع را نشان می دهد. این بار حدی یا نهایی به گونه ای حاصل می شود که به میزان زیادی به قضاوت اپراتور و مفسر وابسته بوده و همچنین انتخاب مقیاس محورهای بار – تغییر مکان نیز می تواند مفهوم بار حدی یا نهایی را تغییر دهد. به طور کلی، حصول بار نهایی تفسیر شده از نتایج آزمایش بارگذاری باید بر اساس یک قاعده ی ریاضی و تعریف شده باشد که نتیجه ی حاصل از آن تکرارپذیر بوده و مستقل از ضوابط مربوط به مقیاس و قضاوت شخص تفسیر کننده باشد.

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

تعیین ظرفیت باربری با روش های دینامیکی
 

هنگامی که ضربه ی چکش در حین عملیات شمع کوبی به سرشمع نواخته می شود، شمع قدری در زمین فرو می رود از عوامل مؤثر بر میزان فرو رفتن شمع در زمین به ازای هر ضربه، عبارت از سختی شمع، مقاومت و سختی خاک در اطراف جداره ی شمع در اعماق مختلف و همچنین در کف و پاین تر از آن و میزان انرژی وارده می باشند. لذا میزان فرو رفتن شمع در خاک به ازای هر ضربه ی چکش با انرژی وارده مشخص، می توان شاخصی از مقاومت خاک باشد به عبارت دیگر به ازای هر ضربه ی چکش یک آزمایش بارگذاری دینامیکی روی شمع صورت می پذیرد، اما تفاوت آن با آزمایش بارگذاری استاتیکی در آن است که به علت ماهیت دینامیکی ضربه ی وارده، اثر جرم و میرایی نیز در رفتار مجموعه ی شمع و خاک اطراف مؤثر است. همچنین تست های دینامیکی برخی از معضلات آزمایشات استاتیکی از قبیل وقت گیر بودن، پرهزینه بودن و عدم امکان انجام اغلب آزمایشات استاتیکی موجود در حیطه های دریایی را ندارد. در نتیجه می توان با حل کلی معادله ی حرکت برای سیستم بر حسب میزان فرو رفتن شمع در خاک، معادل ظرفیت باربری استاتیکی شمع را محاسبه نمود.
توجه به این نکته در دهه های گذشته دست اندرکاران طراحی و اجرای عملیات شمع کوبی را بر آن داشت تا از قوانین ضربه ی نیوتن برای تخمین ظرفیت باربری شمع در حین عملیات استفاده نمایند. فرض فوق بدان معنی است که در حین اعمال ضربه، انرژی وارده توسط چکش به شمع به طور همزمان به نوک شمع نیز اثر کرده و لذا فرمول هایی به نام فرمول های دینامیکی شمع به عنوان جسم واحد صلب فرض شده که یکپارچه پس از اعمال ضربه به پایین حرکت می کند. در صورتی که عملاً حالت انعطاف پذیری مطرح می باشد.
تجارب حاصل از شمع کوبی نشان داد که انتقال انرژی به انتهای شمع به طور همزمان صورت نگرفته و پس از اعمال هر ضربه، موج طولی در شمع ایجاد شده که زمان زیادتری نسبت به اعمال ضربه برای رسیدن به کف شمع و انعکاس از آن داشته، پس می توان سیستم شمع – خاک – چکش در حین شمع کوبی را توسط تئوری انتشار موج در یک محیط محیط یک بعدی مدل نمود. Smith, 1960 اولین راه حل عددی معادله ی فوق را با استفاده از یک مدل ساده برای سیستم شمع - خاک - چکش از روش تفاضل های محدود رای تحلیل تغییر مکان های شمع تحت ضربه ی چکش پیشنهاد نمود. وی در سال 1960 کاربرد روش معادله ی موج یا WEAP (4) را برای تحلیل شمع و شمع کوب به طور مبسوط شرح داد. در مدل عددی Smith شمع و سیستم کوبش به صورت عناصر مجاز در نظر گرفته شده که اجزا شمع به صورت وزنه های معادل در نظر گرفته شده که با فنرهایی با سختی مشخص به هم مرتبط هستند (شکل 8).
اما این روش نیز دارای نقاط ضعفی است که عبارت اند از:
1- دشواری در برآورد صحیح میزان انرژی وارده از طرف چکش به شمع
2- تخمین پارامترهای مناسب بر ای خاک در اعماق مختلف مانند ضریب میرایی جدار و نوک شمع
به منظور رفع نقیصه های موجود در روش تحلیل معادله ی موج، تلاش هایی در راستای تکمیل به کارگیری آنالیز معادله ی موج صورت پذیرفت که منجر به انجام آزمایشات دینامیکی گردید. یکی از متداول ترین این آزمایشات، آزمایش دینامیکی شمع یا PDA (5) می باشد که نصب سنسورهایی در نزدیکی سرشمع، مقادیر نیرو و سرعت (شتاب و کرنش) وارده ی ناشی از ضربه ی چکش را مستقیماً اندازه گیری می کنند. مکمل آزمایش PDA انجام تحلیلی انطباق سیگنال است که در واقع تحلیلی شبیه به WEAP می باشد. با این تفاوت که ورودی های اولیه ی برنامه، نتایج آزمایش PDA است. با استفاده از نتایج این تحلیل می توان اطلاعات مبسوط تری از توزیع تنش و نیرو در امتداد طولی شمع به دست آورده و در نتیجه مقاومت های جداری و نوک را به تفکیک محاسبه نمود. یکی از برنامه های تجاری موجود برای این منظور برنامه ی CAPWAP (6) است.
کاربرد آزمایشات در تفسیرهای دینامیکی نه تنها برای شمع های کوبیدنی، بلکه در سال های اخیر برای شمع های ریختنی و یا حتی شافت های درجای متکی بر سنگ نیز کاربرد داشته و به عنوان آلترناتیو مناسبی برای آزمایشات بارگذاری استاتیکی جهت تعیین باربری و تفکیک اصطکاک جداری و مقاومت کف مطرح و نتایج مطلوبی را نیز به همراه داشته است.

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

الف) فرمول های دینامیکی
 

در کنار روابطی که ظرفیت باربری شمع را با استفاده از روش های تحلیل استاتیکی به دست می دهند، روابطی وجود دارند که به کمک آن ها می توان ظرفیت باربری نهایی شمع را در حین کوبش کنترل نمود که این روابط به فرمول های شمع کوبی یا روابط دینامیکی مشهورند و از اهمیت عملی بالایی برخوردارند. با فرض این که در حین اعمال ضربه، انرژی وارده توسط چکش به شمع به عنوان جسم صلب به طور هم زمان به کف شمع نیز اثر نموده، فرمول های دینامیکی جهت تعیین ظرفیت باربری شمع ارائه گردید.
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
W = وزن چکش
H= ارتفاع سقوط چکش
Eh = انرژی اسمی وارد به سر شمع
Ru = توان باربری نهایی شمع
S = میزان نفوذ در هر ضربه

ب) روش تحلیل معادله ی موج
 

در مراحل ابتدایی توسعه ی شمع کوبی تصور می شد که قوانین ضربه ی نیوتن برای مدل نمودن شمع کوبی کاربرد داشته باشد. فرض فوق بدان معنی است که در حین اعمال ضربه، انرژی منتقل شده توسط چکش به شمع، به طور هم زمان به انتهای شمع (نوک شمع) نیز اثر کرده و لذا فرمول های شمع کوبی قابل توجه و متفاوتی توسط محققین مختلف ارائه شد. تحلیل کوبش (7) به منظور شبیه سازی کوبش واقعی شمع بوده و نتایج حاصل از آن به صورت یک مجموعه ی گراف هایی که شامل تعداد ضربات – ظرفیت باربری نسبت به عمق و یا ظرفیت باربری بر حسب عمق می باشند، ارائه می گردند. در واقع تعدادی تحلیل برای عمق های مختلف صورت گرفته و نتایج به صورت شکل 9 می باشند.

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

ج) تست های دینامیکی PDA
 

اندازه گیری های دینامیکی مقادیر نیرو و سرعت جهت تخمین رفتار سیستم کوبش، شمع و خاک حین کوبش ویا کوبش مجدد مورد استفاده قرار می گیرد. تحلیل گر شمع کوبی با استفاده از اندازه گیری مقادیر نیرو و سرعت می توان مقادیر ظرفیت باربری، عملکرد شمع کوب و میزان انرژی انتقال یافته به شمع، تنش های ایجاد شده در شمع حین کوبش، آسیب دیدگی شمع حین کوبش و پارامترهای ورودی تحلیل معادله ی موج را محاسبه نماید.
ابزاربندی سیستم تحلیل گر شمع کوبی شامل دو شتاب سنج، دو کرنش سنج، تحلیل گر شمع کوبی، اسیلوسکوپ و Channel cassette recorder می باشد که در شکل 10 نشان داده شده است. شتاب سنج ها و کرنش سنج ها معمولاً به فاصله ی دو برابر قطر شمع پایین تر از راس نصب می گردند. سیگنال های فرستاده شده از هر گیج در یک کابل اتصال که از شمع یا کلاهک آویزان است، جمع آوری می گردد. یک کابل اصلی، سیگنال ها را به تحلیل گر شمع کوبی که روی زمین قرار گرفته منتقل می کند. شماتیک تحلیل گر شمع کوبی در شکل 10 نشان داده شده است. تحلیل گر شمع کوبی برای هر ضربه ی چکش، سیگنال های آنالوگ کرنش و شتاب را به اطلاعات دیجیتال نیرو و سرعت بر حسب زمان تبدیل می کند. مسیرهای موج در حین کوبش بر روی اسیلوسکوپ نمایش داده می شوند. بدین ترتیب کیفیت اطلاعات قابل ارزیابی بوده و در صورت لزوم تصحیح می گردند. همچنین به منظور امکان انجام تحلیل های بیش تر روی اطلاعات در هر زمان، سیگنال های نیرو، سرعت و شتاب بر حسب زمان به طور دایمی روی نوار مغناطیسی یا دیجیتالی ذخیره می گردند. تحلیل گر شمع کوبی همچنین برخی از پارامترهای دینامیکی را برای هر ضربه بر روی کاغذ چاپ می کند. این پارامترها عبارت اند از: حداکثر نیروی فشاری و کششی اندازه گیری شده در محل اندازه گیر، حداکثر انرژی منتقل شده به شمع عبوری از محل اندازه گیر، تخمین ظرفیت باربری استاتیکی شمع توسط روش Case.
قبل از آماده نمودن شمع جهت کوبش می توان با نصب یک شتاب سنج به آن و کوبیدن آن توسط یک چکش دستی، سرعت موج در شمع را اندازه گیری نمود. هر مرتبه که موج تنش از محل نصب شتاب سنج روش شمع عبور می کند، یک پیک شتاب مثبت قابل ملاحظه است. حاصل تقسیم دو برابر طول شمع بر فاصله ی زمانی بین دو پیک شتاب، سرعت انتشار موج در شمع را نشان می دهد.

طراحی بهینه ی ژئوتکنیکی پی های عمیق (1)

استفاده از روش Case جهت تعیین ظرفیت باربری
 

تحلیل گر شمع کوبی با استفاده از حل به روش بسته ی انتشار یک بعدی موج، مقاومت های کل استاتیکی و دینامیکی در برابر کوبش را محاسبه می کند. محاسبه ی این مقدار توسط رابطه ی پایه ی روش Case مطابق رابطه ی 17 صورت می گیرد:
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
که در آن RTL مقاومت کل (شامل مقاومت های استاتیکی و دینامیکی)، FT1 مقدار نیرو در زمان 1 (زمان ضربه)، FT2 مقدار نیرو در زمان 2
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
پس از زمان ضربه)، VT1 مقدار سرعت در زمان 1، VT2 مقدار سرعت در زمان 2، M جرم شمع، C سرعت موج در شمع و L طول شمع می باشند. مقاومت دینامیکی ناشی از میرایی توسط رابطه ی 18 قابل محاسبه است:

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)

طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
که در آن Jc فاکتور بی بعد میرایی Case و Vt سرعت نوک شمع می باشد. با تخمین مقاومت دینامیکی، ظرفیت باربری شمع، RSP، از رابطه ی زیر محاسبه می شود:
طراحی بهینه ی ژئوتکنیکی پی های عمیق (2)
گرچه تخمین ظرفیت باربری توسط روش PDA بسیار مفید است اما دقت نتایج به دست آمده از این روش به انتخاب مناسب فاکتور میرایی Case برای خاک موجود در محل دارد. بهترین روش انتخاب فاکتور میرایی Case ایجاد همبستگی بین نتایج روش PDA و آزمایش بارگذاری استاتیکی (که تا گسیختگی انجام شده باشد) و یا استفاده از تحلیل CAPWAP است. شکل 11 یک مثال ساده از نحوه ی محاسبه ی میزان انرژی انتقال یافته در شمع را نشان می دهد.

پي‌نوشت‌ها:
 

1-In-situ Tests
2- Standard Penetration Test
3- Cone Penetration Test
4- Wave Equation Analysis Program
5- Pile Driving Analyser
6- Case Pile Wave Analysis Program
7- Driveability Analysis
 

منبع: ماهنامه ي فني - تخصصي دانش نما، شماره ي پياپي 173-172.




 


http://rasekhoon.net/article/show/190587/طراحی-بهینه-ی-ژئوتکنیکی-پی-های-عمیق-(2)/


تمامی حقوق این پایگاه متعلق به موسسه فرهنگی و هنری نور راسخون وابسته به سازمان اوقاف و امور خیریه می باشد.