عضویت العربیة
پنجشنبه، 6 آذر 1393 (سال اقتصاد و فرهنگ با عزم ملی و مدیریت جهادی)
پیامبر اکرم صلّی الله علیه و آله: براى شهادت حسین علیه السلام، حرارت و گرمایى در دلهاى مؤ منان است که هرگز سرد و خاموش نمى شود.
مسیر جاری : صفحه اصلی/مقالات/علم و دانش/علوم پايه/آمار و ریاضیات/تاریخچه ریاضی

تبلیغات
آخرین مقالات
وجوه تمايز تفسيرهاي معروف

وجوه-تمايز-تفسيرهاي-معروفهنگامي که کتاب خدا براي راهنمايي بشر فرو فرستاده شد، وجود رسول خدا (صلي الله عليه و آله و سلم) دست يابي ادامه ...

زندگي علمي رابرت مرتون

زندگي-علمي-رابرت-مرتونمرتون در سال 1977 به همراه شولز به خاطر " ارائه ي يک روش جديد در محاسبه ارزش کالاها و خدمات دوباره توليدشده ادامه ...

زندگي علمي آمارتيا سِن

زندگي-علمي-آمارتيا-سِنآمارتيا سِن در سال 1998 به خاطر " مشارکت هاي بسيار در زمينه اقتصاد رفاه "، جايزه نوبل اقتصاد را دريافت ادامه ...

پژوهشي در تفسير علمي قرآن کريم

پژوهشي-در-تفسير-علمي-قرآن-کريمبيش از چهارده قرن از تاريخ نزول قرآن کريم مي گذرد و تفسير اين کتاب مبين، سابقه اي بس طولاني از زمان نزول ادامه ...

زندگي علمي مايرون اسکولز

زندگي-علمي-مايرون-اسکولزشولز در سال 1997به همراه رابرت مرتون به خاطر " ارائه ي يک روش جديد در محاسبه ارزش کالاها و خدمات دوباره ادامه ...

مقدمه اي بر مباحث تفسيري سيد مرتضي

مقدمه-اي-بر-مباحث-تفسيري-سيد-مرتضيبي ترديد قرن چهارم هجري و کمي قبل از آن، تا ميانه ي قرن پنجم، از دوره هاي پرفراز و نشيب و سراسر رخ دادهاي ادامه ...

ترجمه قرآن به زبان هاي اروپايي

ترجمه-قرآن-به-زبان-هاي-اروپاييبه شهادت تاريخ، ترجمه بخش هايي از قرآن مجيد به زبان هاي مختلف از زمان خود پيامبر اکرم (صلي الله عليه ادامه ...

نگاهي به تفسيرهاي موضوعي معاصر

نگاهي-به-تفسيرهاي-موضوعي-معاصرتوجه و گرايش به تفسير موضوعي، در دوره ي معاصر و روش هاي گوناگوني که افراد و گروه ها و مؤسسات مختلف در ادامه ...

زندگي علمي رابرت لوکاس

زندگي-علمي-رابرت-لوکاسلوکاس در سال 1995 به خاطر " توسعه و اعمال نظريه انتظارات عقلايي و در نتيجه تغيير شکل آناليز اقتصاد کلان ادامه ...

معرفی به دوستان

ایمیل گیرنده را به منظور دریافت لینک صفحه وارد بفرمائید.


بازدید : 23841 بار

سه‌شنبه، 13 اسفند 1387

تاریخچه ریاضی
تاریخچه ریاضی
تاریخچه ریاضی

تهیه کننده : سید محمد هادی میرمطلبی
منبع : راسخون
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور كه مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به كمك انگشتان دست دستگاه شماری پدید آورد كه مبنای آن ۶۰ بود. این دستگاه شمار كه بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است كه آثاری از آن در كهن ترین مدارك موجود یعنی نوشته های سومری مشاهده می شود. سومریها كه تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساكن بودند. آنها در حدود ۲۵۰۰ سال قبل از میلاد با امپراطوری سامی عكاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
سه قرن اول ریاضیات یونانی که با تلاشهای اولیه در هندسه برهانی بوسیله تالس در حدود ۶۰۰ سال قبل از میلاد شروع شده و با کتاب برجسته اصول اقلیدس در حدود ۳۰۰ سال قبل از میلاد به اوج رسید، دوره‌ای از دستاوردهای خارق العاده را تشکیل می‌دهد.
در حدود ۱۲۰۰ سال قبل از میلاد بود که قبایل بدوی “دوریایی” با ترک دژهای کوهستانی شمال برای دستیابی به قلمروهای مساعدتر در امتداد جنوب راهی شبه جزیره یونان شدند و متعاقب آن قبیله بزرگ آنها یعنی اسپارت را بنا کردند. بخش مهمی از سکنه قبلی برای حفظ جان خود ، به آسیای صغیر و زایر یونانی و جزایر یونانی دریای اژه گریختند و بعدها در آنجا مهاجرنشنهای تجاری یونانی را برپا کردند. در این مهاجرنشینها بود که در قرن ششم (ق.م) اساس مکتب یونانی نهاده شد و فلسفه یونانی شکوفا شد و هندسه برهانی تولد یافت. در این ضمن ایران بدل به امپراطوری بزگ نظامی شده بود و به پیروزی از یک برنامه توسعه طلبانه در سال ۵۴۶ (ق.م) شهر یونیا و مهاجرنشینهای یونانی آسیای صغیر را تسخیر نمود. در نتیجه عده‌ای از فیلسوفان یونانی مانند فیثاغورث موطن خود را ترک و به مهاجرنشینهای در حال رونق جنوب ایتالیا کوچ کردند. مدارس فلسفه و ریاضیات در “کروتونا” زیر نظر فیثاغورث در “الیا” زیر نظر کسنوفانس ، زنون و پارمیندس پدید آمدند.
در حدود۴۸۰ سال قبل از میلاد آرامش پنجاه ساله برای آتنیها پیش آمد که دوره درخشانی برای آنان بود و ریاضیدانان زیادی به آتن جذب شدند. در سال ۴۳۱ (ق.م) با آغاز جنگ “پلوپونزی” بین آتنیهای و آسپارتها ، صلح به پایان رسید و با شکست آتنیها دوباره رکورد حاصل شد.

ظهور افلاطون و نقش وی در تولید دانش ریاضی

اگرچه با پایان جنگ پلوپرنزی مبادله قدرت سیاسی کم اهمیت تر شد، اما رهبری فرهنگی خود را دوباره بدست آورد. افلاطون در آتن یا حوالی آن و در سال ۴۲۷ (ق.م) که در همان سال نیز طاعون بزرگی شیوع یافت و یک چهارم جمعیت آتن را هلاک رد و موجب شکست آنها شد، به دنیا آمد، وی فلسفه را در آنجا زیر نظر سقراط خواند و سپس در پی کسب حکم عازم سیر و سفرهای طولانی شد. وی بدین ترتیب ریاضیات را زیر نظر تیودوروس در ساحل آفریقا تحصیل کرد. در بازگشت به آتن در حدود سال ۳۸۷ (ق.م) آکادمی معروف خود را تاسیس کرد.
تقریبا تمام کارهای مهم ریاضی قرن چهارم (ق.م) بوسیله دوستان یا شاگردان افلاطون انجام شده بود. آکادمی افلاطون به عنوان حلقه ارتباط ریاضیات فیثاغورثیان اولیه و ریاضیات اسکندریه در آمد. تاثیر افلاطون بر ریاضیات ، معلول هیچ یک از کشفیات ریاضی وی نبود، بلکه به خاطر این اعتقاد شورانگیز وی بود که مطالعه ریاضیات عالیترین زمینه را برای تعلیم ذهن فراهم می‌آورد و از اینرو در پرورش فیلسوفان و کسانی که می‌بایست دولت آرمانی را اداره کنند، نقش اساسی داشت. این اعتقاد ، شعار معروف او را بر سر در آکادمی وی توجیه می‌کند: “کسی که هندسه نمی‌داند، داخل نشود.” بنابراین به دلیل رکن منطقی و نحوه برخورد ذهنی نابی که تصور می‌کرد مطالعه ریاضیات در شخص ایجاد می‌کند، ریاضیات به نظر افلاطون از بیشترین اهمیت برخوردار بود، و به همین جهت بود که جای پر ارزش را در برنامه درس آکادمی اشغال می‌کرد. در بیان افلاطون اولین توضیحات درباره فلسفه ریاضی موجود هست.

ادامه دهندگان مسیر افلاطون

* ایودوکسوس که هم نزد آرخوتاس و هم نزد افلاطون درس خوانده بود، مدرسه‌ای در سینویکوس در آسیای صغیر تاسیس کرد.
* منایخموس از معاشرین افلاطون و یکی از شاگردان ایودوکسوس ، مقاطع مخروطی را ابداع کرد.
* دینوستراتوس ، برادر منایخموس، هندسه دانی ماهر و از شاگردان افلاطون بود.
* تیاتیتوس ، مردی با استعدادهای خیلی عادی که احتمالا قسمت اعظم مطالب مقاله‌های دهم و یازدهم اقلیدس را نیز به او مدیونیم، یکی از شاگردان تیودوروس بود.
* ارسطو گرچه ادعای ریاضیدانی نداشت ولی سازمان دهنده منطقی قیاسی و نویسنده آثاری در باب موضوعات فیزیکی بود. وی تسلط خارق العاده‌ای بر روشهای ریاضی داشت.

مسیرهای تکامل ریاضیات در یونان

در تکامل ریاضیات طی ۳۰۰ سال اول ، سه خط سیر مهم و متمایز را می‌توان تشخیص داد.
* ابتدا ، بسط مطالبی است که در اصول مدون شد، که با توانایی توسط فیثاغورثیان شروع شد و بعدها بقرط ، ایودوروس ، تیاتیتوس ، دیگران مطالبی به آن اضافه کردند.
* خط سیر دوم شامل بسط مفاهیمی است در رابطه با بینهایت کوچکها و روندهای حدی و مجموع یابی که تا بعد از اختراع حساب دیفرانسیل و انتگرال در دوارن معاصر به وضوح نهایی دست نیافتند. پارادوکسهای زنون؛ روش افنای آنتیخوان و ایودوکسوس و نظر اتمی بودن جهان که به نام دموکریتوس مربوط است، به مسیر رشد دوم تعلق دارند.
* سومین مسیر تکاملی مربوط به هندسه عالی یا هندسه منحنیهایی بجز دایره و خط مستقیم و سطوحی غیر از کره و صفحه است. شگفت آنکه قسمت عمده این هندسه عالی در تلاشهای مستمر برای حل سه مساله ترسیم که امروزه هم مشهورند عبارتند از: تضعیف مکعب ، تثلیث زاویه و تربیع دایره اختصاص دارد.
نخستین دانشمند معروف یونانی طالس ملطلی (۶۳۹- ۵۴۸ ق. م.) است كه در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیك، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (۵۷۲-۵۰۰ ق. م.) از اهالی ساموس یونان كم كم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مكتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی كه در ۴۹۰ ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی كیوس قضایای متفرق آن زمان را گردآوری كرد و در حقیقت همین قضایا است كه مبانی هندسه جدید ما را تشكیل می دهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آكادموس در آتن مكتبی ایجاد كرد كه نه قرن بعد از او نیز همچنان برپا ماند. این فیلسوف بزرگ به تكمیل منطق كه ركن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضی دان معاصر وی ادوكس با ایجاد تئوری نسبتها نشان داد كه كمیات اندازه نگرفتنی كه تا آن زمان در مسیر علوم ریاضی گودالی حفر كرده بود هیچ چیز غیرعادی ندارد و می توان مانند سایر اعداد قواعد حساب را در مورد آنها به كار برد.
در قرن دوم ق. م. نام تنها ریاضی دانی كه بیش از همه تجلی داشت ابرخس یا هیپارك بود. این ریاضیدان و منجم بزرگ گامهای بلند و استادانه ای در علم نجوم برداشت و مثلثات را نیز اختراع كرد. بطلمیوس كه به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارد در تعقیب افكار هیپارك بسیار كوشید. در سال ۶۲۲ م. كه حضرت محمد (ص) از مكه هجرت نمود در واقع آغاز شكفتگی تمدن اسلام بود.
در زمان مأمون خلیفه عباسی تمدن اسلام به حد اعتلای خود رسید به طوری كه از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی زبان علمی بین المللی شد. از ریاضیدانان بزرگ اسلامی این دوره یكی خوارزمی می باشد كه در سال ۸۲۰ به هنگام خلافت مأمون در بغداد كتاب مشهور الجبر و المقابله را نوشت.
دیگر ابوالوفا (۹۹۸-۹۳۸) است كه جداول مثلثاتی ذیقیمتی پدید آورد و بالاخره محمد بن هیثم (۱۰۳۹-۹۶۵) معروف به الحسن را باید نام برد كه صاحب تألیفات بسیاری در ریاضیات و نجوم است. قرون وسطی از قرن پنجم تا قرن دوازدهم یكی از دردناكترین ادوار تاریخی اروپاست. عامه مردم در منتهای فلاكت و بدبختی به سر می بردند. برجسته ترین نامهایی كه در این دوره ملاحظه می نماییم در مرحله اول لئونارد بوناكسی (۱۲۲۰-۱۱۷۰) ریاضیدان ایتالیایی است. دیگر نیكلاارسم فرانسوی می باشد كه باید او را پیش قدم هندسه تحلیلی دانست.
در قرون پانزدهم و شانزدهم دانشمندان ایتالیایی و شاگردان آلمانی آنها در حساب عددی جبر و مكانیك ترقیات شایان نمودند. در اواخر قرن شانزدهم در فرانسه شخصی به نام فرانسوا ویت (۱۶۰۳-۱۵۴۰م) به پیشرفت علوم ریاضی خدمات ارزنده‌ای نمود. وی یكی از واضعین بزرگ علم جبر و مقابله جدید و در عین حال هندسه دان قابلی بود.
▪ كوپرنیك (۱۵۴۳-۱۴۷۳) منجم بزرگ لهستانی در اواسط قرن شانزدهم دركتاب مشهور خود به نام درباره دوران اجسام آسمانی منظومه شمسی را این چنین ارائه داد:
۱) مركز منظومه شمسی خورشید است نه زمین.
۲) در حالیكه ماه به گرد زمین می چرخد سیارات دیگر همراه با خود زمین به گرد خورشید می چرخند.
۳) زمین در هر ۲۴ ساعت یكبار حول محور خود می چرخد، نه كره ستاره های ثابت.
پس از مرگ كوپرنیك مردی به نام تیكوبراهه در كشور دانمارك متولد شد. وی نشان داد كه حركت سیارات كاملاً با نمایش و تصویر دایره های هم مركز وفق نمی دهد. تجزیه و تحلیل نتایج نظریه تیكوبراهه به یوهان كپلر كه در سال آخر زندگی براهه دستیار وی بود محول گشت. پس از سالها كار وی به نخستین كشف مهم خود رسید و چنین یافت كه سیارات در حركت خود به گرد خورشید یك مدار كاملاً دایره شكل را نمی پیمایند بلكه همه آنها بر روی مدار بیضی شكل حركت می كنند كه خورشید نیز در یكی از دو كانون آنها قرار دارد. قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزه آساست.
از فعالترین دانشمندان این قرن كشیشی پاریسی به نام مارن مرسن كه می توان وی را گرانبها ترین قاصد علمی جهان دانست. در سال ۱۶۰۹ گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس می كرد. وی یكی از واضعین مكتب تجربی است. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف كرد. در همان اوقات كه گالیله نخستین دوربین نجومی خود را به سوی آسمان متوجه كرد در ۳۱ مارس ۱۵۹۶ در تورن فرانسه رنه دكارت به دنیا آمد. نام ریاضیدان بزرگ سوئیسی «پوب گولدن» را نیز باید با نهایت افتخار ذكر كرد.
شهرت وی بواسطه قضایای مربوط به اجسام دوار است كه نام او را دارا می باشد و در كتابی به نام مركزثقل ذكر شده. دیگر از دانشمندان برجسته قرن هفدهم پی یر دوفرما ریاضیدان بزرگ فرانسوی است كه یكی از برجسته ترین آثار او تئوری اعداد است كه وی كاملاً بوجود آورنده آن می باشد. ریاضیدان بزرگ دیگری كه در این قرن به خوبی درخشید ژیرارد زارك فرانسوی است كه بیشتر به واسطه كارهای درخشانش در هنر معماری شهرت یافت و بالاخره ریاضی دان دیگر فرانسوی یعنی روبروال كه بواسطه ترازوی مشهوری كه نام او را همراه دارد همه جا معروف است.
در اواسط قرن هفدهم كم كم مقدمات اولیه آنالیز عناصر بی نهایت كوچك در تاریكی و ابهام به وجود آمد و رفته رفته سر و صدای آن به گوش مردم رسید. بدون شك پاسكال همراه با دكارت و فرما یكی از سه ریاضیدان بزرگ نیمه اول قرن هفدهم بود و نیز می توان ارزش او را در علم فیزیك برابر گالیله دانست.
در نیمه دوم قرن هفدهم ریاضی بطور دقیق دنبال شد. سه نابغه فنا ناپذیر این دوره یعنی نیوتن انگلیسی، لایب نیتس آلمانی و هویگنس هلندی جهان علم را روشن كرده بودند. لایب نیتس در سال ۱۶۸۴ با انتشار مقاله ای درباره حساب عناصر بی نهایت كوچك انقلابی برپا كرد. هوگنس نیز در تكمیل دینامیك و مكانیك استدلالی با نیوتن همكاری كرد و عملیات مختلف آنها باعث شد كه ارزش واقعی حساب انتگرال در توسعه علوم دقیقه روشن شود.
در قرن هجدهم دیگر تمام طوفانهای قرن هفدهم فرو نشست و تحولات این قرن عجیب به یك دوره آرامش مبدل گردید. دالامبر فرانسوی آنالیز ریاضی را در مكانیك به كار برد و از روشهای آن استفاده كرد. كلرو رقیب او در ۱۸ سالگی كتابی به نام تفحصات درباره منحنی های دو انحنایی انتشار داد و در مدت شانزده سال رساله ای تهیه و به آكادمی علوم تقدیم نمود كه شامل مطالب قابل توجهی مخصوصاً در مورد مكانیك آسمانی و هندسه بی نهایت كوچكها بود. دیگر لئونارد اویلر ریاضیدان بزرگ سوئیسی است كه در ۱۵ آوریل ۱۷۰۷ م. در شهر بال متولد شد و در ۱۷ سپتامبر ۱۷۸۳ م. در روسیه درگذشت.
لاگرانژ از جمله بزرگترین ریاضیدانان تمام ادوار تاریخ بشر است. مكانیك تحلیلی او كه در سال ۱۷۸۸ . عمومیت یافت بزرگترین شاهكار وی به شمار می رود. لاپلاس كه در تدریس ریاضی دانشسرای عالی پاریس معاون لاگرانژ بود كتابی تحت عنوان مكانیك آسمانی در پنج جلد انتشار داد. گاسپار مونژ این نابغه دانشمند وقتی كه هنوز بیست سال نداشت شاخه جدید علم هندسه به نام هندسه ترسیمی را بوجود آورد.
ژان باتیست فوریه در مسأله انتشار حرارت روش بدیع و جالبی اختراع كرد كه یكی از مهمترین مباحث آنالیز ریاضی گردید. از دیگر دانشمندان بزرگ این قرن سیمون دنی پوآسون (۱۸۴۰-۱۷۸۱) فرانسوی و شاگرد لاپلاس می باشد كه اكتشافات مهمی در ریاضیات نمود گائوس ریاضیدان شهیر آلمانی تئوری كامل مغناطیس را بوجود آورد. مطالعات او درباره انحناء و ترسیم نقشه ها و نمایش سطوح بر صفحات اصلی و اساسی می باشد.
كوشی فرانسوی كه در سراسر نیمه اول قرن پانزدهم بر دیگر هموطنان برتری داشت با منطق دقیق خود تئوری های زیادی از حساب انتگرال را توسعه داد. آبل در سال ۱۸۲۴ ثابت نمود كه صرفنظر از معادلات درجه اول تا درجه چهارم هیچ دستور جبری كه بتواند معادله درجه پنجم را به نتیجه برساند وجود ندارد. گالوا كه در ۲۶ اكتبر ۱۸۱۱ م. در پاریس متولد شد تئوری گروهها را كه قبلاً بوسیله كوشی و لاگرانژ مطالعه شده بود در معادلات جبری به كار برد و گروه جانشینی هر معادله را مشخص كرد.
دیگر از دانشمندان بزرگ این قرن ژنرال پونسله فرانسوی می باشد كه آثاری همچون «موارد استعمال آنالیز در ریاضی» و «خواص تصویری اشكال» دارد همچنین لازار كانو فرانسوی كه اكتشافات هندسی او دارای اهمیت فوق العاده می باشد. میشل شال هندسه مطلق را با بالاترین درجه استادی به بالاترین حد ممكن ترقی داد. در نیمه اول قرن نوزدهم ریاضیدان روسی نیكلاس ایوانویچ لوباچوشكی نخستین كشف خود را درباره هندسه غیراقلیدسی به جامعه ریاضیات و فیزیك قازان تقدیم كرد.
ادوارد كومرنیز در نتیجه اختراع نوعی از اعداد به نام اعداد ایده آل جایزه ریاضیات آكادمی علوم پاریس را از آن خود كرد. در اینجا ذكر نام دانشمندانی نظیر شارل وایرشتراس و شارل هرمیت كه در مورد توابع بیضوی كشفیات مهمی نمودند ضروری است. ژرژ كانتور ریاضیدان آلمانی مكه در روسیه تولد یافته بود در ربع آخر قرن نوزدهم با وضع فرضیه مجموعه ها اساس هندسه اقلیدسی را در هم كوفت.
▪ كانتور مجموعه را به دو صورت زیر تعریف كرد:
۱) اجتماع اشیایی كه دارای صفت ممیزه مشترك باشند هر یك از آن اشیاء را عنصر مجموعه می گویند.
۲) اجتماع اشیایی مشخص و متمایز
ولی ابتكاری و تصوری هنری پوانكاره یا غول فكر ریاضی آخرین دانشمند جهانی است كه به همه علوم واقف بود. وی در بیست و هفت سالگی بزرگترین اكتشاف خود یعنی توابع فوشین را به دنیای دانش تقدیم نمود. بعد از پوانكاره ریاضیدان سوئدی متیاگ لفلر كارهای او را ادامه داد و سپس ریاضیدان نامی فرانسوی امیل پیكارد در این راه قدم نهاد. در اواخر قرن نوزدهم علم فیزیك ریاضی به منتها درجه تكامل خود رسید و دانش نجوم مكانیك آسمانی تكمیل گردید. امروزه ریاضیات بیش از پیش در حریم سایر علوم نفوذ كرده و نه فقط علوم نجوم و فیزیك و شیمی تحت انضباط آن درآمده اند بلكه اصولاً ریاضیات دانش مطلق و روح علم شده است

تاریخچه مثلثات

تاريخ علم به آدمى يارى مى رساند تا «دانش» را از «شبه دانش» و «درست» را از «نادرست» تشخيص دهد و در بند خرافه و موهومات گرفتار نشود. در ميان تاريخ علم، تاريخ رياضيات و سرگذشت آن در بين اقوام مختلف ، مهجور واقع شده و به رغم اهميت زياد، از آن غافل مانده اند. در نظر داريم در اين فضاى اندك و در حد وسعمان برخى از حقايق تاريخى( به خصوص در مورد رشته رياضيات) را برايتان روشن و اهميت زياد رياضى و تاريخ آن را در زندگى روزمره بيان كنيم.
براى بسيارى از افراد پرسش هايى پيش مى آيد كه پاسخى براى آن ندارند: چه شده است كه محيط دايره يا زاويه را با درجه و دقيقه و ثانيه و بخش هاى شصت شصتى اندازه مى گيرند؟ چرا رياضيات با كميت هاى ثابت ادامه نيافت و به رياضيات با كميت هاى متغير روى آوردند؟ مفهوم تغيير مبناها در عدد نويسى و عدد شمارى از كجا و به چه مناسبت آغاز شد؟ يا چرا در سراسر جهان عدد نويسى در مبناى ۱۰ را پذيرفته اند، با اينكه براى نمونه عدد نويسى در مبناى ۱۲ مى تواند به ساده تر شدن محاسبه ها كمك كند؟ رياضيات از چه بحران هايى گذشته و چگونه راه خود را به جلو گشوده است؟ چرا جبر جانشين حساب شد، چه ضرورت هايى موجب پيدايش چندجمله اى هاى جبرى و معادله شد؟ و… براى يافتن پاسخ هاى اين سئوالات و هزاران سئوال مشابه ديگر در كليه رشته ها، تلاش مى كنيم راه را نشان دهيم، پيمودن آن با شماست…

پيدايش مثلثات

از نامگذارى «مثلثات» مى توان حدس زد كه اين شاخه از رياضيات دست كم در آغاز پيدايش خود به نحوى با «مثلث» و مسئله هاى مربوط به مثلث بستگى داشته است. در واقع پيدايش و پيشرفت مثلثات را بايد نتيجه اى از تلاش هاى رياضيدانان براى رفع دشوارى هاى مربوط به محاسبه هايى دانست كه در هندسه روبه روى دانشمندان بوده است. در ضمن دشوارى هاى هندسى، خود ناشى از مسئله هايى بوده است كه در اخترشناسى با آن روبه رو مى شده اند و بيشتر جنبه محاسبه اى داشته اند. در اخترشناسى اغلب به مسئله هايى بر مى خوريم كه براى حل آنها به مثلثات و دستورهاى آن نيازمنديم. ساده ترين اين مسئله ها، پيدا كردن يك كمان دايره (بر حسب درجه) است، وقتى كه شعاع دايره و طول وتر اين كمان معلوم باشد يا برعكس، پيدا كردن طول وترى كه طول شعاع دايره و اندازه كمان معلوم باشد. مى دانيد سينوس يك كمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن كمان است. همين تعريف ساده اساس رابطه بين كمان ها و وترها را در دايره تشكيل مى دهد و مثلثات هم از همين جا شروع شد. كهن ترين جدولى كه به ما رسيده است و در آن طول وترهاى برخى كمان ها داده شده است متعلق به هيپارك، اخترشناس سده دوم ميلادى است و شايد بتوان تنظيم اين جدول را نخستين گام در راه پيدايش مثلثات دانست. منه لائوس رياضيدان و بطلميوس اخترشناس (هر دو در سده دوم ميلادى) نيز در اين زمينه نوشته هايى از خود باقى گذاشته اند. ولى همه كارهاى رياضيدانان و اخترشناسان يونانى در درون هندسه انجام گرفت و هرگز به مفهوم هاى اصلى مثلثات نرسيدند. نخستين گام اصلى به وسيله آريابهاتا، رياضيدان هندى سده پنجم ميلادى برداشته شد كه در واقع تعريفى براى نيم وتر يك كمان _يعنى همان سينوس- داد. از اين به بعد به تقريب همه كارهاى مربوط به شكل گيرى مثلثات (چه در روى صفحه و چه در روى كره) به وسيله دانشمندان ايرانى انجام گرفت. خوارزمى نخستين جدول هاى سينوسى را تنظيم كرد و پس از او همه رياضيدانان ايرانى گام هايى در جهت تكميل اين جدول ها و گسترش مفهوم هاى مثلثاتى برداشتند. مروزى جدول سينوس ها را تقريبا ۳۰ درجه به ۳۰ درجه تنظيم كرد و براى نخستين بار به دليل نيازهاى اخترشناسى مفهوم تانژانت را تعريف كرد. جدى ترين تلاش ها به وسيله ابوريحان بيرونى و ابوالوفاى بوزجانى انجام گرفت كه توانستند پيچيده ترين دستورهاى مثلثاتى را پيدا كنند و جدول هاى سينوسى و تانژانتى را با دقت بيشترى تنظيم كنند. ابوالوفا با روش جالبى به يارى نابرابرى ها توانست مقدار سينوس كمان ۳۰ دقيقه را پيدا كند و سرانجام خواجه نصيرالدين طوسى با جمع بندى كارهاى دانشمندان ايرانى پيش از خود نخستين كتاب مستقل مثلثات را نوشت. بعد از طوسى، جمشيد كاشانى رياضيدان ايرانى زمان تيموريان با استفاده از روش زيبايى كه براى حل معادله درجه سوم پيدا كرده بود، توانست راهى براى محاسبه سينوس كمان يك درجه با هر دقت دلخواه پيدا كند. پيشرفت بعدى دانش مثلثات از سده پانزدهم ميلادى و در اروپاى غربى انجام گرفت. يك نمونه از مواردى كه ايرانى بودن اين دانش را تا حدودى نشان مى دهد از اين قرار است: رياضيدانان ايرانى از واژه «جيب» (واژه عربى به معنى «گريبان») براى سينوس و از واژه «جيب تمام» براى كسينوس استفاده مى كردند. وقتى نوشته هاى رياضيدانان ايرانى به ويژه خوارزمى به زبان لاتين و زبان هاى اروپايى ترجمه شد، معناى واژه «جيب» را در زبان خود به جاى آن گذاشتند: سينوس. اين واژه در زبان فرانسوى همان معناى جيب عربى را دارد. نخستين ترجمه از نوشته هاى رياضيدانان ايرانى كه در آن صحبت از نسبت هاى مثلثاتى شده است، ترجمه اى بود كه در سده دوازدهم ميلادى به وسيله «گرادوس كره مونه سيس» ايتاليايى از عربى به لاتينى انجام گرفت و در آن واژه سينوس را به كار برد. اما درباره ريشه واژه «جيب» دو ديدگاه وجود دارد: «جيا» در زبان سانسكريت به معناى وتر و گاهى «نيم وتر» است. نخستين كتابى كه به وسيله فزازى (يك رياضيدان ايرانى) به دستور منصور خليفه عباسى به زبان عربى ترجمه شد، كتابى از نوشته هاى دانشمندان هندى درباره اخترشناسى بود. مترجم براى حرمت گذاشتن به نويسندگان كتاب، «جيا» را تغيير نمى دهد و تنها براى اينكه در عربى بى معنا نباشد، آن را به صورت «جيب» در مى آورد. ديدگاه دوم كه منطقى تر به نظر مى آيد اين است كه در ترجمه از واژه فارسى «جيپ»- بر وزن سيب- استفاده شد كه به معنى «تكه چوب عمود» يا «ديرك» است. نسخه نويسان بعدى كه فارسى را فراموش كرده بودند و معناى «جيپ» را نمى دانستند، آن را «جيب» خواندند كه در عربى معنايى داشته باشد.

تاریخچه احتمال و خوان اول

پیدایش رسمی احتمال از قرن هفدهم به عنوان متدی برای محاسبه شانس در بازیهای قمار بوده است. اگر چه ایده های احتمال شانس و تصادفی بودن از تاریخ باستان در رابطه با افسونگری و بخت آزمایی و بازیهای شانسی و حتی در تقسیم کار بین راهبان در مراسم مذهبی وجود داشته است و به علاوه شواهدی از بکارگیری این ایده ها در مسایل حقوق٫ بیمه٫ پزشکی و نجوم نیز یافت میشود٫ اما بسیار عجیب است که حتی یونانیان اثری از خود در رابطه با استفاده از تقارنی که در هندسه بکار می برده اند در زمینه احتمال یا اصولی که حاکم بر مسایل شانس باشد بجا نگذاشته اند.
ارسطو پیشامدها را به سه دسته تقسیم می نمود:
۱) پیشامدهای قطعی که لزومآ اتفاق می افتادند.
۲) پیشامدهای احتمالی که در بیشتر موارد اتفاق می افتادند.
۳) پیشامدهای غیر قابل پیش بینی و غیر قابل شناسایی که فقط با شانس محض رخ میدهند.
اما ارسطو به تعبیرهای مختلف احتمال اعتقاد نداشته و فقط احتمال شخصی که مربوط به درجه اعتقاد افراد نسبت به وقوع پیشامدهاست را معتبر می دانسته است.
پاسکال و فرما اولی کسانی هستند که در اوایل قرن هفدهم مسایل مربوط به بازیهای شانسی را مورد مطالعه قرار دادند و این دو نفر به عنوان بنیانگزاران تیوری ریاضی احتمال لقب گرفته اند. دانشمندانی از قبیل هی گنز کارهای آنها را ادامه داده و ویت و هلی این مسایل را در آمارهای اجتماعی بکار گرفتند. این علم جدید نخستین نقطه اوج خود را در اثر مشهوری از ژاکوب برنولی بدست آورد. در این اثر علاوه بر تعریف کلاسیک احتمال ریاضی٫ اساس خاصی از قانون اعداد بزرگ و کاربردهای احتمال در آمارهای اجتماعی نیز مطرح شده است.
در قرن هجدهم متفکران بزرگی چون دی مور٫ دانیل برنولی٫ آلمبرت٫ اویلر٫ لاگرانژ٫ بیز٫ لاپلاس و گاوس قسمتی از وقت خود را به این علم جدید اختصاص دادند. بیز در سال ۱۷۶۳ قانون معروف بیز را ارایه می دهد و لاپلاس در نوشته ای تمام موضوع علم احتمال را جمع آوری می کند. مهمترین قضایای حدی که در محاسبات احتمالی بکار می رفته و تاثیر احتمال در ریاضی٫ فیزیک٫ علوم طبیعی٫ آمار٫ فلسفه و جامعه شناسی در این اثر جمع آوری شده است.
با مرگ لاپلاس در سال ۱۸۷۲ اوج پیشرفت این علم به اتمام رسید و علی رغم برخی تلاشهای فردی که ماحصل آنها کشف قضایایی چون قضیه اعداد بزرگ پواسون و یا نظریه خطاهای گاوس بود٫ بطور کلی احتمال کلاسیک ارتباط خود را با مسایل تجربی و علمی از دست میدهد. اما جریانهای متقابل ظاهر می شوند. به موازات پیشرفت نظریه ریاضی یک نظریه آمار به عنوان کاربردهایی از احتمال بوجود می آید. این نظریه در رابطه با مسایل مهم اجتماعی از قبیل اداره داده های آماری٫ مطالعه جمعیت و مسایل بیمه بکار می رفته است. اساس کار توسط افرادی چون کوتلت و لکسیز ریخته شده و توسط دانشمندانی چون فشنر(روانشناس)٫ تیله و برانز(منجمان)٫ گالتون و پیرسون(زیست شناسان) پیشرفت نموده است. این کارها در اواخر قرن نوزدهم در جریان بوده و در انگلستان و برخی دیگر از کشورها حرفه حسابگری٫ به مفهوم آماردانی که از اقتصاد و ریاضی هم اطلاعاتی دارد و در جمعیت شناسی و بیمه خبره می شود٫ رونق می یابد. از طرف دیگر فرمولهای کلاسیک ایده های احتمال میز مسیر پیشرفت و کاربردی خود را ادامه میدادند. در این قرن در تلاش برای روشن سازی پایه منطقی کاربردهای احتمال٫ وان میزز یک فرمولبندی جدید برای محاسبات احتمالی ارایه میدهد که نه تنها از نظر منطقی سازگار بوده بلکه نظریه ریاضی و تجربی پدیده های آماری در علوم فیزیکی و اجتماعی را پایه گذاری می نماید.
مدل کلاسیک احتمال توسط برنولی و لاپلاس معرفی شد. این مدل به دلیل فرض همطرازی و عدم امکان تکرار در شرایط یکسان و دلایل دیگر با اشکالاتی روبروست که بسیاری از پدیده های طبیعی بر آن منطبق نیست.
ایده های اساسی نظریه تجربی احتمال که قرار دادن فراوانی نسبی بجای احتمال است در سال ۱۸۷۳ توسط پواسون ارایه گردید.
بسیاری از مسایل احتمال حتی قبل از بیان اصول آن توسط کلموگرف در سال ٫۱۹۳۳ با ابزارهای تجربی و حتی نظری توسط دانشمندان مطرح شده است. ولی کلموگرف با بیان اصول احتمال پایه این علم و ارتباط دقیق آنرا با مباحث ریاضی مستحکم می نماید.
در این زمان احتمال به عنوان یکی از شاخه های ریاضی٫ نه تنها کلیه ابزارهای ریاضی را جهت پیشرفت خود بکار می گیرد٫ بلکه توانسته کاربردهایی را در حل برخی از مسایل ریاضی داشته باشد. نظریه احتمالی اعداد٫ نظریه احتمالی ترکیبیاتی و کاربردهای شاخص احتمال در برخی از مسایل آنالیز٫ بعضی از کاربردهای احتمال در ریاضی هستند.
از طرف دیگر احتمال به عنوان زیربنای ساختاری و اصول ریاضی علم آمار٫ در جهت پیشرفت این علم و قوام بخشی به دستورات آن نقشی اساسی دارد.
مسایل جالب احتمال هندسی و نظریه احتمالی اعداد٫ شمه ای از زیبایی های احتمال است که همه اینها با هم زیبایی٫ کارآیی و توان علم احتمال را نشان می دهند.
خوان اول از کنفرانس ابرساختارهای جبری: ابرساختارها چیزی نیستند جز تعمیم ایده های کلاسیک به سطحی بالاتر. به عنوان مثال تعریف عملگر از مجموعه ای به پاورست آن مجموعه (پاورست همان مجموعه تمام زیر مجموعه های یک مجموعه است.

تاریخ هندسه نااقلیدسی

نیكلای ایوانوویچ لوباچفسكی نخستین كسی بود كه در سال ۱۸۲۹ مقاله ای در زمینه هندسه نااقلیدسی منتشر ساخت. هنگامی كه اثر او منتشر شد چندان مورد توجه قرار نگرفت، بیشتر به این علت كه به زبان روسی نوشته شده بود و روس هایی كه آن را می خواندند، سخت خرده گیری می كردند. وی در سال ۱۸۴۰ مقاله ای به زبان آلمانی منتشر كرد كه مورد توجه گاوس قرار گرفت. گاوس در نامه ای به ه. ك. شوماخر از آن مقاله ستایش كرد و در عین حال تقدم خود را در این زمینه تكرار كرد. لوباچفسكی هندسه اش را در آغاز «هندسه انگاری» و بعد «هندسه عام» نام گذارد و موضوع آن را در مقاله هایی كه منتشر كرد به طور كامل بسط داد
لوباچفسكی علنا با تعلیمات و اصول عقاید كانت درباره فضا، به مثابه شهود ذهنی، به مبارزه برخاست و در سال ۱۸۳۵ نوشت: «تلاش های بی ثمری كه از زمان اقلیدس تاكنون صورت گرفته است... این بدگمانی را در من برانگیخت كه حقیقت... در داده ها وجود ندارد و برای اثبات آن مثل مورد قوانین دیگر طبیعت كمك های تجربی، مثلا مشاهدات نجومی نیاز است.» اریك تمپل بل در كتاب «مردان ریاضیات» لوباچفسكی را «آزادكننده بزرگ» و «كپرنیك دانش هندسه» نام داده است. بل می گوید نام او باید برای هر بچه مدرسه ای به اندازه نام های میكل آنژ یا ناپلئون آشنا باشد. بدبختانه از لوباچفسكی در دوران حیاتش تجلیل نشد.
و در حقیقت در ۱۸۴۶ به رغم بیست سال خدمت برجسته ای كه با عنوان استاد و رئیس انجام داده بود، از دانشگاه قازان اخراج شد. او مجبور شد در سال پیش از مرگش، به علت نابینایی آخرین كتابش را تقریر كند تا برایش بنویسند.

هندسه هذلولی

تا وقتی كه مكاتبات گاوس، پس از مرگ او در ۱۸۵۵، منتشر نشده بود، جهان ریاضی هندسه نااقلیدسی را جدی نگرفته بود. هنوز هم تا سال ۱۸۸۸ لوئیس كارول به هندسه نااقلیدسی می خندید برخی از بهترین ریاضیدانان بلترامی، كیلی، كلاین، پوانكاره، كلیفور و ریمان موضوع را جدی گرفتند، بسط دادند، روشن كردند و آن را در شاخه های دیگر ریاضیات، به ویژه در نظریه توابع مختلط به كار بردند. در ۱۸۶۸ ریاضیدان ایتالیایی «ائوجنیو بلترامی» برای آخرین بار مسئله اثبات اصل توازی را پیش كشید و ثابت كرد كه اثبات آن غیرممكن است او این كار را از این راه كه هندسه نااقلیدسی درست همچون هندسه اقلیدسی، دستگاهی است سازگار، اثبات كرد.
در هندسه نااقلیدسی، نقیض اصل توازی را به عنوان اصل موضوع مفروض می گیریم. یعنی این گزاره را كه «از یك نقطه خارج از یك خط راست بیش از یك نقطه می توان به موازات آن رسم كرد» به جای اصل موضوع توازی اقلیدس قرار می دهیم. این امر به هندسه حیرت انگیزی منجر می شود كه با هندسه اقلیدسی تفاوت اساسی دارد. به قول گاوس قضایای این هندسه به باطلنما می مانند و شاید در نظر فردی مبتدی بی معنی جلوه كنند. ولی تفكر پیگیر و آرام آشكار می سازد كه هیچ چیز ناممكن در آنها نیست، مثلا، سه زاویه مثلث تا بخواهید می توانند كوچك شوند به شرطی كه اضلاع آن به اندازه كافی بزرگ شوند و تازه اضلاع مثلث هرچه باشند، مساحت مثلث هیچ گاه نمی تواند از حد معینی زیادتر شود و در واقع هیچ گاه هم نمی تواند به آن برسد.
گاوس در نامه تاریخی خود به دوست ریاضیدانش «تاورینوس» می گوید: «همه تلاش های من برای یافتن یك تناقض یا یك ناسازگاری در این هندسه نااقلیدسی به شكست انجامیده است. چیزی كه در آن با ادراك ما مغایرت دارد این است كه اگر راست باشد، باید در فضای آن یك اندازه خطی وجود داشته باشد كه خود به خود معین است اگر چه ما آن را نمی دانیم... هرگاه این هندسه نااقلیدسی راست باشد و بتوان آن مقدار ثابت را با همان كمیاتی كه به هنگام اندازه گیری هایمان بر روی زمین و در آسمان بدان ها برمی خوریم، مقایسه كنیم آن گاه ممكن است آن مقدار ثابت را پس از تجربه تعیین كرد. در نتیجه، من گاهی به شوخی آرزو كرده ام كه هندسه اقلیدسی راست نبود، چون در آن صورت ما از پیش انگاره مطلقی برای اندازه گیری داشتیم.»
در هندسه هذلولی می توان ثابت كرد كه اگر دو مثلث متشابه باشند، آنگاه قابل انطباق اند. به عبارت دیگر ملاك «ززز» برای قابلیت انطباق درست است در این هندسه، هندسه هذلولی ممكن نیست مثلثی را بدون انداختن از شكل طبیعی بزرگ یا كوچك كرد. در نتیجه در یك جهان هذلولی، عكاسی ذاتا جنبه فراواقعگرایی سوررئالیستی پیدا خواهد كرد یك نتیجه تكان دهنده قضیه مذكور این است كه در هندسه هذلولی یك پاره خط می تواند به كمك یك زاویه مشخص شود. یعنی یك زاویه از یك مثلث متساوی الساقین، طول یك ضلع را به طور منحصر به فرد معین می سازد. همان طور كه در نامه گاوس به تاورینوس نیز ذكر گردید، اغلب با بیان اینكه هندسه هذلولی واحد مطلق طول دارد، این نكته را هیجان انگیزتر می كنند. اگر هندسه جهان مادی هندسه هذلولی بود لازم نبود واحد طول با دقت در دفتر استانداردها نگاهداری شود.
در هندسه اقلیدسی، تقسیم هر زاویه به سه قسمت برابر، به وسیله ستاره خط كش غیرمدرج و پرگار تنها، نشدنی است.
در هندسه هذلولی، علاوه بر آنكه این تقسیم نشدنی است، تقسیم هر پاره خط به سه قسمت برابر نیز به وسیله ستاره و پرگار تنها، نشدنی است در هندسه اقلیدسی، رسم چهارضلعی منتظمی كه مساحت آن برابر مساحت دایره مفروضی باشد، شدنی نیست ولی در هندسه هذلولی این كار شدنی است

تاریخچه ی انتگرال

بيش از دو هزار سال پيش ارشميدس (287-212 قبل از ميلاد) فرمول هايي را براي محاسبه سطح وجه ها ، ناحيه ها و حجم هاي جامد مثل كره ، مخروط و سهمي يافت . روش انتگرال گيري ارشميدس استثنايي و فوق العاده بود جبر ، نقش هاي بنيادي ، كليات و حتي واحد اعشار را هم نمي دانست .
ليبنيز (1716-1646) و نيوتن (1727-1642) حسابان را كشف كردند . عقيده كليدي آنها اين بود كه مشتق گيري و انتگرال گيري اثر يكديگر را خنثي مي كنند با استفاده از اين ارتباط ها آنها توانستند تعدادي از مسائل مهم در رياضي ، فيزيك و نجوم را حل كنند.
فورير (1830-1768) در مورد رسانش گرما بوسيله سلسله زمان هاي مثلثاتي را مي خواند تا نقش هاي بنيادي را نشان دهد .رشته هاي فورير و جابجايي انتگرال امروزه در زمينه هاي مختلفي چون داروسازي و موزيك اجرا مي شود .
گائوس (1855-1777) اولين جدول انتگرال را نوشت و همراه ديگران سعي در عملي كردن انتگرال در رياضي و علوم فيزيك كرد . كايوچي (1857-1789) انتگرال را در يك دامنه همبستگي تعريف كرد . ريمان (1866-1826) و ليبيزگو (1941-1875) انتگرال معين را بر اساس يافته هاي مستدل و منطقي استوار كردند .
ليوويل (1882-1809) يك اسكلت محكم براي انتگرال گيري بوجود آورد بوسيله فهميدن اينكه چه زماني انتگرال نامعين از نقش هاي اساسي دوباره در مرحله جديد خود نقش اساسي مرحله بعد هستند . هرميت (1901-1822) يك شيوه علمي براي انتگرال گيري به صورت عقلي و فكري ( يك روش علمي براي انتگرال گيري سريع ) در دهه 1940 بعد از ميلاد استراسكي اين روش را همراه لگاريتم توسعه بخشيد .
در دهه بيستم ميلادي قبل از بوجود آمدن كامپيوترها رياضيدانان تئوري انتگرال گيري و عملي كردن آن روي جداول انتگرال را توسعه داده بودند و پيشرفت هايي حاصل شده بود .در ميان اين رياضيدانان كساني چون واتسون ، تيچمارش ، بارنر ، ملين ، ميچر ، گرانبر ، هوفريتر ، اردلي ، لوئين ، ليوك ، مگنوس ، آپل بلت ، ابرتينگر ، گرادشتاين ، اكستون ، سريواستاوا ، پرودنيكف ، برايچيكف و ماريچيف حضور داشتند .
در سال 1969 رايسيچ پيشرفت بزرگي در زمينه روش علمي گرفتن انتگرال نامعين حاصل كرد . او كارش را بر پايه تئوري عمومي و تجربي انتگرال گيري با قوانين بنيادي منتشر كرد روش او عملاً در همه گروه هاي قضيه بنيادي كارگر نيست تا زماني كه در وجود آن يك معادله سخت مشتق گيري هست كه نياز دارد تا حل شود . تمام تلاش ها ااز آن پس بر روي حل اين معادله با روش علمي براي موفقيت هاي مختلف قضيه اساسي گذاشته شد . ايت تلاش ها باعث پيشرفت كامل سير و روش علمي رايسيچ شد . در دهه 1980 پيشرفت هايي نيز براي توسعه روش او در موارد خاص از قضيه هاي مخصوص و اصلي او شد .
از قابليت تعريف انتگرال معين به نتايجي دست ميابيم كه نشان دهنده قدرتي است كه در رياضيات مي باشد (1988) جامعيت و بزرگي به ما ديدگاه موثر و قوي در مورد گسترش در رياضيات و همچنين كارهاي انجام شده در قوانين انتگرال مي دهد . گذشته از اين رياضيات توانايي دارد تا به تعداد زيادي از نتيجه هاي مجموعه هاي مشهور انتگرال پاسخ دهد ( اينكه بفهميم اين اشتباهات ناشي از غلط هاي چاپي بوده است يا نه ) . رياضيات اين را ممكن مي سازد تا هزاران مسئله انتگرال را حل نماييم به طوريكه تا كنون در هيچ يك از كتابهاي دستنويس قبلي نيامده باشد . در آينده ديگر وظيفه ضروري انتگرال اين است كه به ازمايش تقارب خطوط ، ارزش اصلي آن و مكانيسم فرض ها بپردازد .

تاریخچه فصیل حسابداری

حسابداری در جهان نزدیک به ۶۰۰۰ سال قدمت دارد و تاریخ نخستین مدارک کشف شده حسابداری به ۳۶۰۰ سال قبل از میلاد برمی گردد. پیشینه حسابداری در ایران نیز به نخستین تمدنهایی بر می گردد که دراین سرزمین پا گرفت، و مدارک حسابداری بدست آمده با ۲۵ قرن قدمت، گواه بر پیشرفت این دانش در ایران باستان اس. در طول تاریخ، روشهای حسابداری متوع و متعددی برای اداره امور حکومتی و انجام دادن فعالیتهای اقتصادی ابداع شد، که در پاسخ به نیازهای زمان، سیر تحولی و تکاملی داشته است. ممیزی املاک در تمدن ساسانی(در جریان اصلاحات انوشیروان، به منظور تشخیص مالیاتهای ارضی، کلیه زمینهای مزروعی کشور ممیزی و مشخصات آن از جمله مساحت، نوع زمین و نوع محصول در دفتری ثبت می گردید.) و تکامل حسابداری برای نگهداری حساب درآمد و مخارج حکومتی در دوران سلجوقیان(نگارش اعداد را به صورت علایمی کوتاه شده از نام اعداد عربی، حساب سیاق می نامند.
حسابداری سیاق که احتمالا در دوران سلجوقیان تکامل یافته، روشی است که بر اساس آن، حساب جمع و خرج هر ولایت در دفتر مربوط به ان ولایت ثبت و در عین حال یک دفتر اصلی در مرکز نگهداری می شده است که خلاصه جکع و خرج هر ولایت به طور جداگانه در صفحات مربوط، در آن به خط سیاق نوشته می شده است. این روش در دوران قاجاریه تکمیل شد و کتب خمسه(دفاتر پنج گانه) برای گروههای عمده مخارج نیز نگهداری می شده است.
و نگهداری حساب فعالیتهای بازرگانی به حساب سیاق، نمونه های بارز و پیشرفته آن است.
با این حال حسابداری نوین( دوطرفه) همانند بسیاری از دانشهای کاربردی دیگر، به همراه ورود فراورده های صنعتی و رسوخ موسسات و شرکتهای خارجی به ایران راه یافت. و در جریان تحولات اقتصادی _اجتماعی صد سال گذشته با پیدایش سازمانهای جدید دولتی و خصوصی و دگرگونی شیوه های تولید و توزیع بسیار پیشرفت کرد.
حساداری با تمدن همزاد است و به اندازه تمدن بشری قدمت دارد. در تمدنهای باستانی بین النهرین که قسمت اعظم ثروتهای جامعه در اختیار فرمانروا یا فرمانروایان بود. معمولا کاهنان که قشر ممتازی را در سلسله مراتب اجتماعی تشکیل می دادند و ظیفه نگارش را بطور اعم و نگهداری حساب درآمدها و ثروتهای حکومت را بطور اخص به عهده یا در واقع در انحصار داشتند و در عین حال به ثبت برخی از معاملات شهروندان نیز می پرداختند، از جمله در تمدن باستانی سومر (SUMMER) نظام مالی جامعی برقرار بود و کاهنان سومری علاوه بر نگهداری حساب درآمدهای حکومتی، به نحوی موجودی غلات، تعداد دامها و میزان املاک حکومتی را محاسبه می کردند.
نخستین مدرک کشف شده حسابداری در جهان، لوحه های سفالین از تمدن سومر در بابل (Babylon) است و قدمت آن به ۳۶۰۰ سال قبل از میلاد می رسد و از پرداخت دستمزد تعدادی کارگر حکایت دارد.
مدارک و شواهد بدست آمده از تمدن باستانی مصر (۵۲۵_۵۰۰۰ ق.م) حکایت از آن دارد که در اجرای طرحهای ساختمانی این تمدن، نوعی کنترل حسابداری برقرار بوده که بهره گیری از نیروی کار هزاران هزار نفر را در امر ایجاد بنا و حمل و نقل مصالح ساختمانی در تشکیلاتی منظم، میسر می کرده است، از تمدن مصر در دورانی که یونانیان و رومیان بر آن تسلط داشتند نیز مجموعه های متعددی از حسابهای نوشته شده بر پاپیروس باقی مانده است.
شواهد و مدارک به دست آمده از یونان باستان نیز حکایت از استقرار کنترلهای حسابداری دارد. از جمله حساب معبد پارتنون در لوحه های مرمرین اکروپولیس حک و بخشی از ان هنوز هم باقی است.
سکه به عنوان واحد پول حدود ۷۰۰ سال قبل از میلاد در لیدی(Lydia) ابداع گردید.(لیدی سرزمینی باستانی است که در آسیای صغیر، کنار دریای اژه بین میزی (Mysia) و کاری(Caria) قرار داشت. کرزوس (Croesus) آخرین پادشاه آن از کوروش شکست خورد.) و به سرعت در تمدنهای آن زمان رواج یافت. در ازان عصر هخامنشی ، نظام مالی و پولی (نظام پولی بدیعی توسط داریوش اول بر پایه طلا و نقره با رابطه مبادله ثابت پایه گذاری شد و سکه داریک به وزن ۸.۴۱ گرم در مقابل ۲۰ سکه نقره به نام “شکل” هر یک به وزن ۵.۶ گرم مبادله می شده است و بنابراین رابطه تبدیل طلا به نقره ( ۳/۱ ۱۳ ) ) جامع ومنسجمی بر قرار بوده و حساب درآمدها و مخارج حکومت به ریز و به دقت ثبت و ظبط و نگهداری می شده است.
در رم و یونان باستان حسابداری پیشرفته ای وجود داشته و نوعی حساب جمع و خرج تنظیم می شده است. یک جمعدار، یک مامور دولت و یا شخصی که محافضت پول یا دارایی دیگری به او محول بوده است در مقاطعی از زمان حساب خود را به اربابش پس می داده است. برای این کار رو فهرست تفصیلی از دریافتها و پرداختها بر حسب پول، وزن یا مقیاس دیگری تهیه می شد که جمع آن دو مساوی بود. فهرست پرداخت شامل مبالغ پرداختی، کالای فروخته شده و یا به مصرف رسیده در طول یک دوره بعلاوه مانده پول و کالایی بود که نزد جمعدار باقی مانده و باید به ارباب تادیه می شد. این نوع حسابداری تا قرون وسطی ادامه یافت.
همانطور که ملاحظه فرمودید، حسابداری باستانی تنها جنبه های محدودی از فعالیتهای مالی را در بر می گرفت و یا سیستم جامعی که کلیه عملیات مالی حکومت را ثبط و ظبط کند و یا به نگهداری حساب معاملات تجاری بپردازد، فاصله بسیاری داشت.

سرمایه داری تجاری و رنسانس

از دوران باستان تا اواخر قرون وسطی تغییری اساسی در جهت تبدیل حسابداری به یک سیستم جامع صورت نگرفت و تنها پیشرفت قابل ذکر گسترش دامنه نگهداری حساب برای عملیات گوناگون حکومتها و اشخاص بود.
از اوایل قرن سیزدهم “دولت_شهرها” و یا “شهر_جمهوریهای” کوچکی خارج از سلطه پادشاهان و خوانین فیودال در ایتالیای کنونی پا گرفت که فضای سیاسی_ اقتصادی مناسبی را برای رشد سوداگری فراهم آورد.بدین معنی که در این جمهوریهای کوچک هیچ مانعی در راه تجارت آزاد، حتی تجارت با سرزمینهای دوردست وجود نداشت و استفاده از سرمایه به صورت سرمایه مولد یا سرمایه تجاری مانند کشتیها و سایر وسایل بازرگانی امکان پذیر و متداول بود. علاوه بر این، با رونق داد وستد، پول در مبادلات تجاری نقش گسترده یافت و اقتصاد پولی رواج یافت.
در قرون سیزدهم و چهاردهم همزمان با رشد بازرگانی، صنعت و بانکداری، پیشرفت زیادی در تکنیک نگهداری حساب بوجود آمد. بزرگتر شدن اندازه موسسات، رواج معاملات نسیه و استفاده از عوامل متعدد در کسب و کار موجب شد که دیگر یک شخص به تنهایی نتواند امر موسسه بزرگی را اداره کند و این امر ابداع سیستم حسابداری کاملتری را ضروری ساخت.
گمان می رود که کاربرد قاعده جمع وخرج در مورد حساب صندوق نخستین گام در راه پیدایش سیستم نوین بوده باشد.
بدین معنی که صندوقدار در ازای وجوهی که دریافت می کرد بدهکار و در مقابل مبالغی که می پرداخت بستانکار می شد. این قاعده در مورد حسابهای مشتریان نیز بکار می رفت و آنان در ازای وجوهی که قرض می گرفتند و یا کالایی که به نسیه می خریدند بدهکار و در مقابل وجوهی که می پرداختند بستانکار می شدند و بدین ترتیب مانده حساب آنها معین می شد. همین قاعده در مورد نگهداری حساب بستانکاران نیز بکار می رفت. در نیمه قرن سیزدهم حسابداران ایتالیایی متوجه این نکته شدند که دریافت پول از یک بدهکار دو ثبت را ضروری می سازد. جنبه دریافت پول که باید در حساب صندوق ثبت شود و جنبه پرداخت پول که باید در حساب شخصی پرداخت کننده پول ثبت گردد. در اوایل قرن چهاردهم دو اصطلاح بدهکار و بستانکار ، یعنی دو واژه ایتالیایی دادن(dare) و گرفتن(avere) کاملا متداول گردید. پیشرفت تازه در قرن چهاردهم ابداع شکل دو طرفه حساب بود که در سمت چپ اقلام بدهکار و در سمت راست اقلام بستانکار، نوشته می شد و با این کار چگونگی ثبتها آشکار می گردید.
حسابداری جنسی با نگهداری حسابی جداگانه برای هر محموله از کالای خریداری شده آغاز گردید و هر حساب در ازای خرید یک محموله کالا بدهکار و در مقابل حساب فروشنده یا حساب نقد بستانکار می شد.
سپس با فروش هر مقدار از کالای یک محموله، حساب مربوطه بستانکار و در مقابل حساب مشتری یا حساب نقد، بستانکار می گردید تا این که تمامی اجناس یک محموله به فروش برسد. این کار یعنی بدهکار کردن حساب هر محموله از کالای خریداری شده به قیمت خرید و بستانکار کردن آن به قیمت فروش معمولا تفاوتی را ایجاد می کرد که به حساب سود و زیان نقل می شد. بدین ترتیب سیستم دفترداری دوطرفه به آرامی و در پی مجموعه ای از ابداعات پیاپی در فاصله سالهای ۱۲۵۰-۱۳۵۰ میلادی در چند جمهوری کوچک ایتالیا زاده شد و تکامل یافت و شهرهای فلورانس، ونیز و جنوا پیشرو این تحول بودند. برخی از صاحبنظران دفاتر حساب بجا مانده از سالهای ۱۲۹۶ تا ۱۲۹۹ را نخستین دفاتر جساب دو طرفه کامل می دانند. برخی دسگر حساب دو طرفه کاملا متوازنی را که در سال ۱۳۴۰ میلادی توسط پیشکار(steward) شهر جنوا(Genoa) تنظیم گردیده است. نحستین نمونه کامل دفاتر حساب دوطرفه ذکر می کنند. در هر حال، در آستانه قرن پانزدهم میلادی در ایتالیا و دیگر کشورهای اروپایی، سیستم دفترداری دوطرفه بکار می رفته است.
گسترش فن دفترداری دوطرفه به سراسر اروپا مرهون انتشار کتاب ریاضیاتی است که لوکا پاچیولی (Luca Pacioli) به سال ۱۴۹۴ تالیف کرده است. پاچیولی کشیشی بود که در دانشگاههای جمهوریهای پروجا، ناپل، پیزا و فلورانس ریاضیات تدریس می کرد و با اندیشمندان بزرگ هم عصر خود از جمله پیرو دلا فرانسسکا (piro della francedca)، لیون باتیستا آلبرتی (Leon Battista Alberti) و لیونارده داوینچی (Leonardo da Vinci) دوستی نزدیک داشت. مطالب کتاب ریاضیات مزبور را پاچیولی نوشت و شکلهای آن را داوینچی ترسیم کرد.
بخشی از این کتاب شامل چند فصل به حسابداری اختصاص داشت که نخستین توصیف مدون از سیستم حسابداری دوطرفه است. در این بخش از کتاب، پاچیولی با استفاده از منابع و روشهای موجود سه دفتر اصلی حساب را به ترتیب زیر تشریح می کند:
دفتر باطله (Waste Book) (در ایران این دفتر را دفتر کپیه یا مسدوده هم نامیده اند.)
که خلاصه معاملات تاجر به ترتیب تاریخ وقوع در آن ثبت می شد.

دفتر روزنامه (Journal)

که در آن مطالب دفتر باطله تلخیص و بر حسب بدهکار و بستانکار ثبت می گردید.

دفتر کل (Ledger)

حاوی حسابهای واقعی که ثبتهای دفتر روزنامه به آن نقل می گردید.
پاچیولی لهمیت کاربرد پول را بعنوان مقیاس مشترک سنجش اقلام مختلف به درستی دریافته بود و بر لزوم تاریخ گذاری معملات و عطف متقابل دفاتر به یکدیگر تاکیدی بجا داشت. با این حال، وی درباره دوره مالی، تهیه تراز آزمایشی، تهیه صورت سود و زیان، بستن حساب سود و زیان به حساب سرمایه و تهیه ترازنامه مطلبی ندارد و تنها درباره طرز بستن و لزوم موازنه کردن حسابها به هنگام نقل حسابها از دفاتر قدیمی به دفاتر جدید توضیحات نسبتا کاملی داده است. همچنین پاچیولی بین اموال شخصی تاجر و اموال تجارتخانه تمایزی نگذاشته و درباره نگهداری حساب داراییهای ثابت نیز مطلبی ندارد.
رساله پاچیولی (که او را پدر حسابداری می نامند) به علت سادگی، روانی و ارزشهای عملی در طول قرنهای پانزدهم و شانزدهم به اغلب زبانهای اروپایی ترجمه شد و حسابداری دوطرفه تا اواخر قرن هفدهم در اغلب کشورهای اروپایی رواج یافت.
از قرن شانزدهم تا اوایل قرن نوزدهم تحول بنیادی در حسابداری بوجود نیامد، تنها تغییر اساسی تیوری جدیدی بود که توسط استوین (Simon Stevin) هلندی در اواخر قرن شانزدهم عنوان شد. بر اساس این تیوری در هر معامله در مقابل هر بدهکار باید یک بستانکار وجود داشته باشد. استوین همچنین ضرورت تفکیک اموال موسسه را از اموال شخصی صاحب سرمایه مطرح و لزوم نگهداری حسابی جداگانه برای سرمایه را نیز عنوان کرد. تغییرات دیگری که در این فاصله در دفترداری رخ داد عبارت بود از ایجاد ستونهای فرعی در دفاتر روزنامه و کل، منسوخ شدن دفتر باطله و جایگزینی اسناد و مدارک مربوط به معاملات (مانند فاکتور خرید و فروش) به جای آن. حسابداری جنسی نیز در این فاصله بهبود یافت و سود و زیان هر محموله محاسبه و به حساب سود و زیان نقل می گردید. تا سال ۱۸۰۰ میلادی موازنه کردن حسابها در پایان سال، تهیه صورت سود و زیان و ترازنامه معمول شد اما جز برای نگهداری سوابق فعالیتهای موسسه استفاده دیگری نداشت.
سیستم دفترداری دوطرفه که گوته (Goethe) اندیشمند بزرگ آلمانی آن را یکی از زیباترین ابداعات بشری می داند، مجموعه منسجمی را فراهم آورد که کلیه معاملات و رویدادهای مالی ثبت، سود هر فعالیت تجاری تعیین و اموال شخصی تاجر از اموال تجارتخانه یا موسسه تجاری تفکیک گردید.
ابداع و تکامل سیستم دفتر داری دوطرفه اولا سوداگریهای بزرگ مانند فرستادن کشتیهای عظیم حامل کالاهای گوناگون به نقاط مختلف جهان را با مشارکت بازرگانان و افراد متعدد، تسهیل کرد، زیرا با کاربرد آن سرمایه گذاری هر یک از مشارکت کنندگان در یک فعالیت سوداگرانه که معمولا به صورت کالا و اجناس گوناگون بود به سهولت بر حسب پول (سکه) اندازه گیری و حساب ان جداگانه نگهداری می شد و در خاتمه فعالیت نیز کالا و طلا و نقره ای که کسب شده بود، بر حسب پول قابل تقویم و محاسبه می شد و در نتیجه تعیین سهم هر یک از مشارکت کنندگان از کل درآمد حاصل به سادگی امکان پذیر می گردید.
ثانیا حسابداری دو طرفه، با فراهم ساختن امکان تفکیک اموال شخصی تاجر از اموال تجارتخانه، تشکیل شرکتهای تجارتی را با مشارکت چند نفر عملی کرد، زیرا با کاربرد آن، نگهداری حساب جداگانه سهمالشرکه هر یک از شرکا در سرمایه شرکا امکان پذیر و سهم آنان از کل دارایی شرکت و منافع حاصل از فعالیت تجاری قابل اندازه گیری و محاسبه شد. این امکان، مشارکت صاحبان سرمایه ای را که خود به کار تجارت نمی پرداختند نیز عملی ساخت و بدیت ترتیب رشد و توسعه بنگاهها و موسسات تجاری را تسریع کرد.
به رغم تحولات شگرف اقتصادی_ اجتماعی و دگرگونی و پیچیدگی و توسعه معاملات و سازمانهای تجارتی از قرن شانزدهم تا عصر حاضر، عناصر اصلی سیستم دفترداری دوطرفه همچنان بدون تغییر باقی مانده است. دلیل بقای این سیستم در طول پنج قرن در سادگی اصول، انعطاف پذیری و قابلیت ان در ثبت، انتقال و گزارش اطلاعات بسیار متنوع، در قالب صورتهای مالی قابل رسیدگی است.

انقلاب صنعتی

سسیتم ثبت دوطرفه که به اعتبار ابداع ان در ایتالیا، سیستم حسابداری ایتالیایی نیز نامیده می شود به سرعت در سراسر اروپا رواج یافت و در طول قرن هجدهم تقریبا کلیه موسسات مالی و تجاری بزرگ، این شیوه حسابداری را بکار می بردند. اما اروپای قرن هجدهم آبستن تحولاتی شگرف بود. انقلاب صنعتی در نیمه دوم این قرن آغاز و تا پایان نیمه اول قرن نوزدهم تداوم یافت و تحولات و تغییرات وسیع اقتصادی و اجتماعی را در پی داشت. این تحول بنیادین بر تمامی عرصه های زندگی فرعی و اجتماعی مردم اروپا اثر گذاشت و مناسبات اقتصادی_ اجتماعی و سیاسی جوامع اروپایی را دگرگون کرد و از طریق این قاره به سراسر جهان راه یافت و آثار مفید و زیانبار بسیاری به جای گذاشت.
بارزترین عرصه تحول در انقلاب صنعتی، قرار گرفتن ماشین در خدمت تولید بود که شیوه تولید را از تولید دستی به تولید کارخانه ای متحول کرد.
پیدایش و رشد کارخانه های بزرگ و کوچک با توانایی ساختن کالاهای همسان به مقدار زیاد، از یک سو به زوال صنایع دستی، روستایی و خانگی در مدت کوتاهی انجامید و از سوی دیگر، رقابت بین کارخانه داران را ایجاد کرد.
حسابداری صنعتی ابتدا بیشتر به گزارش بهای تمام شده محصولات بر مبنای اطلاعات مالی گذشته تاکید داشت و در پیش بینی اینده از حدس وگمان فراتر نمی رفت.
اما بزرگتر شدن کارخانه ها و پیچیده تر شدن روشهای تولید و در نتیجه افزایش تولیدات، رقابت بین واحدهای صنعتی را برای تسلط بر بازارهای پیوسته ملی و همچنین رقابت در عرضه تولیدات به بازارهای جهانی تشدید کرد و اداره موسسات بزرگ پیچیده به پیدایش مفهوم مدیریت علمی انجامید. مدیریت علمی، روش برخورد منظم و منطقی با مسایل به منظور یافتن بهترین راه برای انجام هر کار است.
وجود رقابت، نیاز به آگاهی از بهای تمام شده محصول را ایجاب نمود و در پاسخ به این ضرورت نوعی دفترداری صنعتی یا دفترداری هزینه یابی که بعدها حسابداری صنعتی نامیده شد، ابداع گردید.
علاوه بر این، در گذر زمان تکنیکهای گزارش اطلاعات مالی برای تصمیم گیریهای مدیریت تکامل یافت و با ارایه و توضیح مدلهای مقداری، امکان اتخاذ تصمیمات درست بر اساس اطلاعات موجود، تسهیل گردید. امروزه این رشته از حسابداری به معنای اعم حسابداری مدیریت نامیده می شود.

بازار سرمایه و شرکتهای سهامی

با بزرگتر شدن شرکتها نیاز به توسعه و همچنین سرمایه بیشتر احساس شد. لذا با بهره گیری از دو دستاورد بزرگ و مفید سرمایه داری صنعتی یعنی سازماندهی و همکاری، موجبات رشد، توسعه و تکامل شرکتهای سهامی فراهم و با سازمان یافتن بازار سرمایه، تامین مالی طرحهای بزرگ صنعتی امکان پذیر شد.
بازار سرمایه و شرکتهای سهامی این امکان را فراهم آورد که تعداد زیادی از صاحبان سرمایه، با سرمایه های کوچک و بزرگ در یک واحد اقتصادی مشارکت کنند و به این ترتیب مشکلات تامین سرمایه های کلان برای ایجاد ساختمان، خرید ماشین آلات و احداف تاسیسات یک کارخانه بزرگ یا طرح بزرگ صنعتی برطرف گردید.
در عین حال، محدودیت مسولیت صاحبان سهام به مقدار سرمایه ای که در شرکت گذاشته اند و قابلیت انتقال سهام، به رونق سرمایه گذاری و گسترش بازارهای سازمان یافته سرمایه انجامید.
در ادامه فرایند رشد و توسعه شرکتهای سهامی، هییت مدیره شرکتهای سهامی بزرگ، کار مدیریت اجرایی را به مدیران موظفی که برای اداره امور شرکت بر می گزینند محول و خود به تعیین خط مشی های اجرایی شرکت و نظارت بر کار مدیران می پردازند. این تحول، گروه تازه ای از مدیران کارآزموده حرفه ای را پدید آورد که در سرمایه موسساتی که اداره می کنند سهمی ناچیز دارند یا اصولا سهمی ندارند، بدین ترتیب غالبا مدیریت موسسات از مالکیت آنها تفکیک و متمایز گردید.
سازمان جدید سرمایه، نقش شرکتهای سهامی و بورسهای اوراق بهادار بعد تازه ای به حسابداری بخشید و ان لزوم ارایه گزارشهای مالی به سهامداران برای آگاه کردن آنان از چگونگی اداره سرمایه هایشان، ارزیابی عملکرد و سنجش کارایی مدیران و گردانندگان شرکت و بالاخره آینده سرمایه گذاریشان بود.

حسابداری حرفه ای و حسابرسی

افزایش موارد استفاده و شمار استفاده کنندگان از اطلاعات مالی، وظیفه حسابداران را از رفع نیازهای معدودی صاحب سرمایه به پاسخگویی به نیازهای مراجع و گروههای متعدد ذینفع و ذیعلاقه، ارتقا داد و به آن نقشی اجتماعی بخشید.
وظیفه نوین حسابداری را حسابداران شاغل در موسسات نمی توانستند به تنهایی انجام دهند زیرا وجود رابطه استخدامی مستقیم آنان را به پذیرش نظرات مدیران واحدهای اقتصادی در تهیه صورتهای مالی ناگزیر می کرد و از طرفی اشتغال آنان در موسسات، نوعی جانبداری طبیعی از آن موسسات را در پی داشت.
حال آنکه صورتهای مالی باید نیازهای گروههای مختلف استفاده کننده با علایق و منافع متفاوت و احتمالا متضاد را برطرف می کرد.
برای آن که گروههای مختلف استفاده کننده بتوانند به صورتهای مالی تهیه شده توسط موسسات اعتماد بیشتری نمایند، حسابداران خبره ای انتخاب شدند و وظیفه یافتند که با رسیدگی به مدارک اسناد و حسابها هر گونه تقلب و سوء استفاده را کشف و نسبت به صورتهای مالی بی طرفانه اضهار نظر کنند و این کار حسابرسی نامیده شد.
حسابرسی به معنای عام یعنی رسیدگی به حسابها از لحاظ کشف تقلب و سو استفاده سابقه طولانی دارد و در طول تاریخ همیشه نوعی حسابرسی در موسسات دولتی و خصوصی وجود داشته است، اما حسابرسی به معنای نوین یعنی رسیدگی و اظهار نظر نسبت به صورتهای مالی به دنبال رشد و پیدایش شرکتهای سهامی که در ان مسولیت سهامداران محدود به مقدار سرمایه ای بود که در شرکت گذاشته بودند، بوجود آمد و زادگاه آن انگلستان است.
اما تغییر شگرفی که اکنون در جریان است، تحول حسابرسی از حسابرسی مالی به حسابرسی جامع است که در آن علاوه بر رسیدگی و گزارش نسبت به صورتهای مالی واحد مورد رسیدگی، عملیات و معاملات آن از لحاظ رعایت سیاستهای مقرر شده توسط مراجع تصمیم گیرنده ( مانند مجمع عمومی) و رعایت قوانین و مقررات حاکم بر فعالیت واحدهای اقتصادی رسیدگی می شود و کارایی مدیریت واحد مورد رسیدگی از لحاظ چگونگی استفاده از منابع موجودد و نحوه اجرای برنامه و عملیات ونتایج حاصل از ان سنجیده و گزارش می شود. این گونه حسابرسی که جنبه اخیر آن حسابرسی مدیریت نامیده می شود عمدتا در مورد شرکتهای بزرگ که منابع کلان و حیطه فعالیت گسترده ای دارند و مدیریت آن از مالکیت سرمایه جداست در پاسخ به ضرورت ارزیابی عملکرد مدیریت این گونه موسسات توسط متخصصین با صلاحیت (حسابداران و متخصیصینی از رشته های دیگر) اجرا می شود و چشم انداز تکامل حسابداری حرفه ای است.

تکامل ریاضیات کاربردی و سنت نظری

از زمانی که در یونان باستان، عنصر « استدلال » وارد ریاضیات شد، سنت ساختمان نظری – استدلالی دانش ریاضی به وجود آمد؛ سنتی که در تمام تاریخ بعدی ریاضیات دنبال شده است. البته از نظر تاریخی ، عقب نشینی از« ایده آل های » ساختمان نظری دانش ریاضی هم دیده می شود.
این برگشت از نظریه و جهت گیری کاربردی را می توان در ریاضیات سده های میانه (به ویژه در ایران ) دید که بیش از هزار سال دوام داشت و زمینه را برای دوران جدید ریاضیات نظری فراهم کرد. بعد از شعله های درخشان نظری در ریاضیات باستان و دوران هلنیم؛ دیگر ممکن نبود روش خاص کاربردی نخستین، دوباره زنده شود .دانش ریاضی سده های میانه؛ برایندی از سنت نظری و سمت گیری کاربردی است . نتیجه این «سنتز» مرحله ای بعدی ریاضی کاربردی است. که نسبت به ریاضیات مصر و میان دو رود، در سطح بالاتری قرار دارد.
این تصور که زمانی گمان می کردند، «وزن مخصوص» ریاضیات نظری در طول تاریخ ،به طور دائم رو به افزایش بوده است،مدت هاست که دیگر وجود ندارد. این تصور به این دلیل پیدا شده بود که به ریاضی ایرانی کم بها می دادند.«…ریاضیات عربی به هیچ وجه به معنای ریاضیات عرب ها نیست، همان طور که نوشته های لاتینی فرمای فرانسوی توریچلی ایتالیای، نیوتن انگلیسی، لایب نیتس آلمانی و اولر که در آکادمی روسیه کار می کرد را می توان دانش لاتینی نامید. درواقع، اصطلاح نادرست ریاضیات عربی، به معنای موقعیت های دانشمندان ملت های گوناگون است… که چه در زمینه های ریاضیات و چه در دانش های دیگر، در طول بیش از پانصد سال از سده نهم تا سده پانزدهم میلادی، پیشتاز بوده اند. آن ها بیش تر از آسیای میانه و نزدیک و به ویژه از ایران (قفقاز، خوارزم، خراسان،…) برخاسته اند.به اصطلاح، ریاضیات عربی را باید بیشتر متعلق به ملت های آسیای میانه و خراسان بزرگ دانست .»
((- آ.پ.یوسکدویچ، در کتاب : درباره ریاضیات ملت های آسیای میانه، در سده های نهم تا پانزدهم-))
حقیقت نشان می دهد که بر خلاف تصور قبلی عده ای از تاریخ نویسان، ریاضیات «عربی» تنها «حلقه ارتباطی » نبوده که ریاضیات نظری یونانی را حفظ کرده است و بدون این که چیزی به آن اضافه کند،این ارثیه را به اروپاییان تحویل دهد. روشن شده است که ریاضیات اروپای سده های میانه، از نظر ساختاری شبیه ریاضیات کشورهای شرق بوده ومجموعه آن ها، خیلی نیرومندتر از ریاضیات یونانی به سمت ریاضیات کاربردی گرایش داشته است .
به طور کلی می توان درباره مرحله تازه ای از تکامل ریاضیات صحبت کرد. در این دوران می توان مساله ها، موضوع ها و دانش هایی از ریاضیات را دید که آن را از دوران قبل از خود مشخص می کند.
باید گفت که بسیاری از نوشته های فلسفی مربوط به ریاضیات به آن دوره تکامل ریاضیات که بسیار اساسی است و بی اندازه اهمیت دارد، به اندازه کافی بها داه نشده و نیرو و پتانسیل روش شناختی که خاص ریاضیات سده های میانه است، بازتاب مناسب خود را پیدا نکرده است.
درضمن، مولفان به نقش عمده روش شناسی ریاضیات تکیه می کنند که نوشته آندره کولمر گمروف، با عنوان «ریاضیات » (۱۹۵۴) درباره آن صحبت شده است. بنابر آن، ریاضیات نظری یونان باستان و کشورهای هنلیستی (که آراسته به ساختمان اصل موضوعی بود) در ریاضیات سده های میانه (تا سال ۳۰سده هفدهم ) به دوره ریاضیات مقدماتی مربوط می شوند. درریاضیات مقدماتی، ریاضیات نظری و ریاضیات کاربردی که دانش ریاضی را به سمت منظم شدن هدایت می کند، در هم ادغام شده اند و به عنوان حالتی واحد و یگانه مورد تفسیر قرار می گیرند که در آن جنبه نظری ریاضیات برتری دارد . به دنبال دوره ریاضیات مقدماتی، دوره ریاضیات با کمیت های متغیر می آید (تا میانه سده نوزدهم ) که دیگر به روشنی خصلت نظری دارد.
داده های تازه ما را وا می دارد به جریان تکامل ریاضیات، به گونه دیگری بنگریم. به ویژه کارهای ارشمیدس و آپولونیوس ،به روشنی از مرزهای ریاضیات مقدماتی فراتر رفته اند. در حالی که ریاضیات سده های میانه، بیش تر با ریاضیات کاربردی دوران قبل از یونان خویشاوند است. ولی در کتاب هایی که درباره ای فلسفه و روش شناسی ریاضیات نوشته شده اند، حقیقت های تازه مورد ارزیابی درست قرار گرفته اند و بازتاب کافی نیافته اند. اُ.ای. کدروسی در مقدمه کتاب خود به نام «مسأله های روش شناختی تکامل ریاضیات » (۱۹۷۷)، یادآوری می کند که دوره های تاریخی تکامل ریاضیات را، بر اساس تقسیم بندی کولموگوروف درنظر گرفته است.
کم بها دادن به اندیشه متفکران ریاضی سده های میانه در «مقاله هایی درباره تاریخ ریاضیات »اثر نیکل بورباکی هم منعکس شده است و از یادگارهای سده های میانه تنها از۱۲نوشته نام آورده شده است که در ضمن، هیچ کدام از آن ها «عربی» نیستند .
گرایش های امروزی در تکامل ریاضیات را تنها وقتی می توان فهمید که ازتقسیم نادرست تکامل ریاضیات صرف نظر کنیم، تقسیمی که تنها جنبه هایی از آن را، با نفی دیگری در نظر می گیرد ودور نمایاند که پیشرفت ریاضیات روی خط پیوسته ای از یونان باستان تا زمان حاضر حرکت کرده است. توجه اغراق آمیز به مسیر نظری ریاضیات و کم توجهی به ریاضیات کاربردی، به تحریف تصور ما از دانش ریاضی منجر می شود ودر تقسیم بندی مسائل فلسفی – روش شناختی بر مسائل مربوط به روش قیاسی، ساختمان های ترکیبی و پایه های اصل موضوعی دانش ریاضی منجر می شود. نقطه اوج درکتاب های مربوط به مسأله های فلسفی ریاضیات، به طور معمول در بررسی موقعیت های شکل گیری نظری ریاضیات است: روش اصل موضوعی و تکامل آن، و از آن جمله پارادکس های ساختمان نظری ریاضیات بر پایه مجموعه ها و عکس العمل فلسفی روش شناختی در برابر این پارادکس ها، و بر این اساس، درواقع ،نقش خاص عمل در تکامل ریاضیات، به فراموشی سپرده می شود.این موقعیت در بیان نامه ی بورباکی، درباره شکل گرفتن دانش ریاضیات نظری بازتاب یافته است: « این که بین پدیده های تجربی و ساختارهای ریاضی، بستگی نزدیکی وجود دارد و این که به صورتی نامنتظر با کشف های فیزیک معاصر تأیید می شود، برای ما دلیل های واقعی این علت ها معلوم نیست و به احتمالی هرگز هم معلوم نخواهد شد» ((- بورباکی. – مقاله هایی درباره تاریخ ریاضیات - )) و تا زمانی که علت های پنهانی راکه درریاضیات کاربردی وجود دارد وموجب نیروی تاریخی ساختارهای نظری دوره بعد شده است، از نظر دور داشته باشیم، نمی توانیم این « تردید » را از خود دور کنیم.
ارزیابی مسأله های اصلی فلسفی و روش شناختی دانش ریاضی درسده های میانه را، باید در جای دیگری به دست آورد. که عبارت است از واکنش نسبت به تکامل و تصحیح میانه ریاضیات این دوران – مسأله ای که در برابر ریاضیات امروزی هم قرار دارد. تأثیر فعالیت های عملی بر جهت گیری تکامل ریاضیات، به صورت های متفاوتی در دوره های مختلف نمایان می شود.
سنتز سنت های نظری و سمت گیری کاربردی را در ریاضیات سده های میانه، می توان در دو زمینه بررسی کرد. اگر از جنبه خاص به این موضوع بنگریم، به هم آمیختگی سنت نظری و جهت گیری کاربردی، به کمک تنظیم آ گاهی های ریاضی با روش محاسبه ای و الگوریتمی تحقق می یابد . هسته مرکزی این شکل گیری تازه دانش و ریاضی، الگوریتم محاسبه ای است که نسبت نظری (نسبت تنظیم آگاهی ها به کمک استدلال) را تثبیت می کند و در عین حال، عمل های لازم را برای جهت گیری کاربردی ریاضیات، به بهترین صورت خود در می آورد.
براساس تصور یگانه ای که درباره ریاضیات به عنوان یک دانش کاربردی وجود دارد، آگاهی های ریاضی پیش می رود و تکامل می یابد. واین دلیل عینی کلی تر روش شناختی است، کلیتی که با آن دوره فعالیت آن گروه اجتماعی که ریاضیات راحفظ و از آن استفاده می کند، تحکیم می شود در کارهای روش شناختی درباره موضوع روش های ریاضیات در اساس خود، نتیجه ای است از فعالیت های گروه های اجتماعی که در روند به وجود آوردن آگاهی ها دخالت دارند. سنتز سنت نظری «استدلال» و سمت گیری کاربردی دانش ریاضی، به صورت بازتابی از «طبقه اجتماعی » در می آید. برعکس، آن برخورد روش شناختی درباره ریاضیات، برخوردی که فعالیت گروه اجتماعی را به حساب می آورد و امکان یکی شدن اثبات و محاسبه را فراهم می آورد، به نوبه خود بر ساز و کار تکامل دانش، تأثیر می گذارد و حلقه های متفاوت آنرا بیش تر و محکم تر به هم نزدیک می کند. در نتیجه ریاضیات سده های میانه، همچون مجموعه کاملی که سمت گیری کاربردی دارد، مصرف می شود. دانشی که به صورت واحد کاملی درک می شود و تصور همگون و یکپارچه ای درباره موضوع ریاضیات به ما می دهد.

تاریخچه عدد صفر

یکی از معمول ترین سیوالهایی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سیوال بدنبال این نیستیم که بگوییم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.
اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند ۲۱۰۶ عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد ۲۱۶ کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.
هیچکدام از این کاربردها تاریخچه پیدایش واضحی ندارند. در دوره اولیه تاریخ کاربرد اعداد بیشتر بطور واقعی بوده تا عصر حاضر که اعداد مفهوم انتزاعی دارند. بطور مثال مردم دوران باستان اعداد را برای شمارش تعداد اسبان، … بکار می برند و در اینگونه مسایل هیچگاه به مسیله ای برخورد نمی کردند که جواب آن صفر یا اعداد منفی باشد.
بابلیها تا مدتها در جدول ارزش مکانی هیچ نمادی را برای جای خالی در جدول بکار نمی بردند. می توان گفت از اولین نمادی که آنها برای نشان دادن جای خالی استفاده کردن گیومه (”) بود. مثلاً عدد۶″۲۱ نمایش دهنده ۲۱۰۶ بود. البته باید در نظر داشت که از علایم دیگری نیز برای نشان دادن جای خالی استفاده می شد ولیکن هیچگاه این علایم به عنوان آخرین رقم آورده نمی شدندبلکه همیشه بین دو عدد قرار می گیرند بطور مثال عدد “۲۱۶ را با این نحوه علامت گذاری نداریم. به این ترتیب به این مطلب پی می بریم که کاربرد اولیه عدد صفر برای نشان دادن جای خالی اصلاً به عنوان یک عدد نبوده است.
البته یونانیان هم خود را از اولین کسانی می دانند کهدرجای خالی ,صفر استفاده می کردند اما یونانیان دستگاه اعداد (جدول ارزش مکانی اعداد) مثل بابلیان نداشتند. اساساً دستاوردهای یونانیان در زمینه ریاضی بر مبنای هندسه بوده و به عبارت دیگر نیازی نبوده است که ریاضی دانان یونانی از اعداد نام ببرند زیر آنها اعداد را بعنوان طول خط مورد استفاده قرار می دادند.
البتهبعضى ازریاضی دانان یونانی ثبت اطلاعات نجومی را بر عهده داشتند. در این قسمت به اولین کاربرد علامتی اشاره می کنیم که امروزه آن را به این دلیل که ستاره شناسان یونانی برای اولین بار علامت ۰ را برای آن اتخاذ کردند، عدد صفر می نامیم. تعداد معدودی از ستاره شناسان این علامت را بکار بردند و قبل از اینکه سرانجام عدد صفر جای خود را بدست آورد، دیگر مورد استفاده قرار نگرفت و سپس در ریاضیات هند ظاهر شد.
هندیان کسانی بودند که پیشرفت چشمگیری در اعداد و جدول ارزش مکانی اعداد ایجاد کردند هندیان نیز از صفر برای نشان دادن جای خالی در جدول استفاده می کردند.
اکنون اولین حضور صفر را به عنوان یک عدد مورد بررسی قرار می دهیم اولین نکته ای که می توان به آن اشاره کرد این است که صفر به هیچ وجه نشان دهنده یک عدد بطور معمول نمی باشد. از زمانهای پیش اعداد به مجموعه ای از اشیاء نسبت داده می شدند و در حقیقت با گذشت زمان مفهوم صفر و اعداد منفی که از ویژگیهای مجموعه اشیاء نتیجه نمی شدند، ممکن شد. هنگامیکه فردی تلاش می کند تا صفر و اعداد منفی را بعنوان عدد در نظر بگیرید با این مشکل مواجه می شود که این عدد چگونه در عملیات محاسباتی جمع، تفریق، ضرب و تقسیم عمل می کند. ریاضی دانان هندی سعی بر آن داشتند تا به این سیوالها پاسخ دهندو در این زمینه نیز تا حدودى موفق بوده اند .
این نکته نیز قابل ذکر است که تمدن مایاها که در آمریکای مرکزی زندگی می کردند نیز از دستگاه اعداد استفاده می کردند و برای نشان دادن جای خالی صفر را بکار می برند.
بعدها نظریات ریاضی دانان هندی علاوه بر غرب، به ریاضی دانان اسلامی و عربی نیز انتقال یافت. فیبوناچی، مهمترین رابط بین دستگاه اعداد هندی و عربی و ریاضیات اروپا می باشد.
یکی از معمول ترین سیوالهایی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سیوال بدنبال این نیستیم که بگوییم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.
اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند ۲۱۰۶ عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد ۲۱۶ کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.
هیچکدام از این کاربردها تاریخچه پیدایش واضحی ندارند. در دوره اولیه تاریخ کاربرد اعداد بیشتر بطور واقعی بوده تا عصر حاضر که اعداد مفهوم انتزاعی دارند. بطور مثال مردم دوران باستان اعداد را برای شمارش تعداد اسبان، … بکار می برند و در اینگونه مسایل هیچگاه به مسیله ای برخورد نمی کردند که جواب آن صفر یا اعداد منفی باشد.
بابلیها تا مدتها در جدول ارزش مکانی هیچ نمادی را برای جای خالی در جدول بکار نمی بردند. می توان گفت از اولین نمادی که آنها برای نشان دادن جای خالی استفاده کردن گیومه (”) بود. مثلاً عدد۶″۲۱ نمایش دهنده ۲۱۰۶ بود. البته باید در نظر داشت که از علایم دیگری نیز برای نشان دادن جای خالی استفاده می شد ولیکن هیچگاه این علایم به عنوان آخرین رقم آورده نمی شدندبلکه همیشه بین دو عدد قرار می گیرند بطور مثال عدد “۲۱۶ را با این نحوه علامت گذاری نداریم. به این ترتیب به این مطلب پی می بریم که کاربرد اولیه عدد صفر برای نشان دادن جای خالی اصلاً به عنوان یک عدد نبوده است.
البته یونانیان هم خود را از اولین کسانی می دانند کهدرجای خالی ,صفر استفاده می کردند اما یونانیان دستگاه اعداد (جدول ارزش مکانی اعداد) مثل بابلیان نداشتند. اساساً دستاوردهای یونانیان در زمینه ریاضی بر مبنای هندسه بوده و به عبارت دیگر نیازی نبوده است که ریاضی دانان یونانی از اعداد نام ببرند زیر آنها اعداد را بعنوان طول خط مورد استفاده قرار می دادند.
البته بعضى ازریاضی دانان یونانی ثبت اطلاعات نجومی را بر عهده داشتند. در این قسمت به اولین کاربرد علامتی اشاره می کنیم که امروزه آن را به این دلیل که ستاره شناسان یونانی برای اولین بار علامت ۰ را برای آن اتخاذ کردند، عدد صفر می نامیم. تعداد معدودی از ستاره شناسان این علامت را بکار بردند و قبل از اینکه سرانجام عدد صفر جای خود را بدست آورد، دیگر مورد استفاده قرار نگرفت و سپس در ریاضیات هند ظاهر شد.
هندیان کسانی بودند که پیشرفت چشمگیری در اعداد و جدول ارزش مکانی اعداد ایجاد کردند هندیان نیز از صفر برای نشان دادن جای خالی در جدول استفاده می کردند.
اکنون اولین حضور صفر را به عنوان یک عدد مورد بررسی قرار می دهیم اولین نکته ای که می توان به آن اشاره کرد این است که صفر به هیچ وجه نشان دهنده یک عدد بطور معمول نمی باشد. از زمانهای پیش اعداد به مجموعه ای از اشیاء نسبت داده می شدند و در حقیقت با گذشت زمان مفهوم صفر و اعداد منفی که از ویژگیهای مجموعه اشیاء نتیجه نمی شدند، ممکن شد. هنگامیکه فردی تلاش می کند تا صفر و اعداد منفی را بعنوان عدد در نظر بگیرید با این مشکل مواجه می شود که این عدد چگونه در عملیات محاسباتی جمع، تفریق، ضرب و تقسیم عمل می کند. ریاضی دانان هندی سعی بر آن داشتند تا به این سیوالها پاسخ دهندو در این زمینه نیز تا حدودى موفق بوده اند .
این نکته نیز قابل ذکر است که تمدن مایاها که در آمریکای مرکزی زندگی می کردند نیز از دستگاه اعداد استفاده می کردند و برای نشان دادن جای خالی صفر را بکار می برند.
بعدها نظریات ریاضی دانان هندی علاوه بر غرب، به ریاضی دانان اسلامی و عربی نیز انتقال یافت. فیبوناچی، مهمترین رابط بین دستگاه اعداد هندی و عربی و ریاضیات اروپا می باشد.

رياضيات محض و كاربردي

ماهيت كار
رياضي يكي از قديمي ترين و پايه اي ترين رشته هاي علوم است . رياضي دانان از نظريه هاي رياضي , روشهاي محاسبه , آلگوريتمها و آخرين دستاوردهاي رايانه اي براي حل مسائل اقتصادي , علمي , مهندسي , فيزيك و تجاري استفاده مي كنند.كار رياضي دانان به دو بخش گسترده تقسيم مي شود . رياضي محض و رياضي كار بردي . اين دو گروه كاملا از يكديگر قابل تمايز نبوده و اغلب بايكديگرهمپوشاني دارند. رياضي دانان محض(نظري) با گسترش مباني جديد و تشخيص روابط كشف نشده ميان قوانين موجود رياضي باعث گسترش دانش رياضي مي شوند . اگرچه آنان به دنبال گسترش دانش پايه بوده بي آنكه لزوما موارد كاربردي آنرا بررسي كنند ، چنين دانش مطلقي , نوعي راهبرد مفيد در ايجاد وپيشبرد بسياري از دستاوردهاي مهندسي و علمي بوده است.
بسياري از رياضيدانان محض به عنوان استاد در دانشگاه ها استخدام شده و زمان كاري خود را بين تدريس و امور تحقيقي تقسيم مي كنند.
از طرف ديگر، رياضي دانان كاربردي با بهره گيري از نظريات و روشهاي رياضي مانند روشهاي محاسبه و مدل سازي رياضي به فرمولبندي وحل مسائل عملي در امور تجاري , دولتي , مهندسي و درعلوم اجتماعي، فيزيك و امور مربوط به زندگي مي پردازند . به عنوان مثال , براي برنامه ريزي درخطوط هوايي ميان شهر ها , بررسي اثر وميزان ايمني داروهاي جديد , خصوصيات آيروديناميكي پيش مدل اتومبيل ها و مقرون به صرفه بودن روشهاي ديگر توليد به تجزيه و تحليل كار آمدترين راه مي پردازند.
امكان دارد رياضي دانان كاربردي كه دست اندر كار تحقيق و گسترش صنعتي هستند با حل مسائل مشكل باعث ايجاد يا تقويت روشهاي رياضي شوند .گروهي از رياضي دانان به نام رمزياب به تجزيه و تحليل و كشف سيستمهاي رمزي مي پردازند كه به صورت كد بوده واز طريق آنها اطلاعات نظامي , سياسي , مالي يا اجرايي و قانوني رد و بدل مي شود.
رياضي دانان كاربري با يك مساله كاربردي شروع كرده , اجزاي تفكيك شده عمليات مورد نظر را در فكر مجسم مي كنند و سپس اجزا را به متغير هاي رياضي تبديل مي كنند.
رياضي دانان غالبا با نمونه سازي توسط راه حلهاي فرعي ، بوسيله رايانه به تجزيه و تحليل روابط ميان متغيرها و حل مسائل پيچيده مي پردازند.
قسمت اعظم كار در رياضي كار بردي به وسيله افراد با عنواني غير از رياضي دان انجام مي شود . در حقيقت ، از آنجائيكه رياضي شالوده ايست كه بر اساس آن بسياري ازرشته هاي علمي بنا مي شود شمار افرادي كه از فنون رياضي بهره مي گيرند بيشتر از كسانيست كه رسما" به عنوان رياضي دان شناخته ميشوند .
به عنوان مثال , مهندسان , دانشمندان علوم رايانه , فيزك دانان و اقتصاد دانان از جمله كساني هستند كه به شكل وسيعي از علم رياضي بهره مي جويند. گروهي از افراد متخصص مانند آماردانان , آمارگيران , تحليل گران محقق در عمليات , در حقيقت در شاخه خاصي از رياضي متخصص مي باشند . بسيار پيش ميايد كه رياضي دانان كاربردي براي دستيابي به راه حلهايي در مسائل گوناگون با افراد ديگر شاغل در سازمان همكاري كنند .
محيط كار رياضي دانان غالبا"در دفاتر راحت كار ميكنند .آنها اغلب جزئي از يك تيم متشكل از متخصصين علوم مختلف كه ممكن است شامل اقتصاددانان , مهندسان , دانشمندان علوم رايانه اي , فيزيك دانان , تكنسين ها و ديگر افراد باشد .تحويل به موقع پروژه ها , اضافه كاري , تقاضاهاي خاص براي اطلاعات يا تجزيه و تحليل و مسافرتهاي طولاني به منظور شركت در سمينارها يا كنفرانسها جزئي از شغل آنان محسوب مي شود . رياضي داناني كه در دانشگاهها مشغول به كارند معمولا"در زمينه تدريس و تحقيق مسئوليتهايي بر عهده دارند. اين افراد اغلب يا به تنهايي امور تحقيقاتي را اداره مي كنند و يا ازهمياري دانشجويان فارغ التحصيل و علاقه مند به موضوعات تحقيقي بهره مند مي شوند.
فرصتهاي شغلي
بيشترين فرصتهاي شغلي در سرويسهاي تحقيقي و آز مايشي , آموزشي , امنيتي , سيستمهاي تبادل كالا ، مديريتي و روابط عمومي وجود دارد . دربين مراكز توليدي ، صنايع هوا فضا و دارويي اصليترين استخدام كننده ها ميباشند . گروهي از رياضي دانان نيزدر بانكها و يا شركتهاي بيمه مشغول به كارند.
آموزش و ادامه تحصيل بسياري از فرصتهاي شغلي كه در كارهاي پژوهشي براي رياضيدانان در نظر گرفته ميشود بصورت عضوي از يك تيم حرفه اي مي باشد . دانشمندان محقق در چنين مشاغلي يا در زمينه تحقيقات پايه و مباني نظري و يا در تحقيقات عملي براي ايجاد يا بهبود فرايند توليد مشغول به كار مي شوند . اكثر افرادي كه داراي مدرك ليسانس يا فوق ليسانس بوده و در صنايع خصوصي كار ميكنند , نه به عنوان رياضي دان بلكه بعنوان برنامه نويس رايانه , تحليل گر سيستم يا مهندس سيستم رايانه اي مشغول به كارند.
دوره هاي رياضي مورد نياز اين مدرك شامل حساب ديفرانسيل , معادلات تفاضلي و جبر خطي و انتزاعي مي باشد . دوره هاي اضافي ميتواند نظريه هاي احتمالات و آمار , آناليز رياضي , آناليز عددي , توپولوژي , رياضيات گسسته و منطق رياضي را در برگيرد .
بسياري از دانشگاه ها براي دانشجوياني كه در رشته رياضي تحقيق مي كنند , در زمينه رشته هاي مربوط به رياضي مانند علوم رايانه اي , مهندسي , فيزيك و اقتصاد دوره هايي بر گذار مي كنند . براي بسياري از كار فرمايان ,آگاهي همزمان در رياضي و علوم رايانه اي , اقتصاد يا ديگر علوم نوعي مزيت محسوب مي شود . يك محصل رياضي آينده نگر بايد تا جايي كه امكان دارد بسياري از دروس رياضي را در دبيرستان بياموزد
در مورد رياضيات كاربردي آموزش ديدن در زمينه هايي كه قرار است رياضي در آن به كار برده شود بسيار مهم است . رياضي به شكل وسيعي در علوم فيزيك ,آمار , مهندسي مورد استفاده قرار مي گيرد . علوم رايانه اي , تجاري , مديريت صنعتي , اقتصاد , امور مالي , شيمي , زمين شناسي , علوم روزمره و اجتماعي وابسته به رياضي كار بردي مي باشند . رياضي دانان بايد در زمينه برنامه نويسي رايانه اي از اطلاعات جامعي برخوردار باشند چرا كه اكثر محاسبات رياضي پيچيده و مدل سازي رياضي بوسيله رايانه انجام مي شود.
رياضي دانان نياز به قدرت استدلال خوب و مداومت براي تشخيص ، آناليز و به كار بردن مباني رياضي در مسائل فني دارند . مهارتهاي ارتباطي مهم مي باشد چرا كه رياضي دانان بايستي در زمينه راه حلهاي مطرح شده با افرادي وارد بحث شوند كه احتمالا" اطلاع كافي ازعلم رياضي ندارند.
چشم انداز كار
انتظار مي رود كه در آينده از ميزان استخدام افراد به عنوان رياضي دان كاسته شود چرا كه مشاغل اندكي با نام علم رياضي وجود خواهد داشت . هر چند دارندگان مدرك PHD و فوق ليسانس با اطلاعات جامعي در زمينه رياضي و علوم مربوطه مانند مهندسي يا علوم رايانه اي احتمالا از فرصتهاي شغلي مطلوب تري برخوردار خواهند بود . با اين حال , بيشتر اين افراد به جاي عنوان رياضي دان از عنوان كاري بر خوردار مي شوند كه نمايانگر شغل آنان مي باشد . پيشرفت تكنولوژي معمولا باعث گسترش كاربرد علم رياضي مي شود و در آينده به افرادي كه در اين رشته مهارت يابند نياز پيدا خواهيم كرد . با اين وجود افرادي كه در امور صنعتي يا دولتي مشغول به كار مي شوند علاوه بر علم رياضي در علوم مربوطه نيز به دانش پيشرفته اي نياز خواهند داشت رياضي دانان براي يافتن شغل بايد با افرادي رقابت كنند كه در علوم مربوط به رشته رياضي تخصص دارند . موفق ترين جويندگان كاركساني هستند كه مي توانند مباني رياضي را در مسائل واقعي زندگي بكار برده و از مهارتهاي ارتباطي ,گروهي و رايانه اي مطلوبي بهره مند هستند .
در صورت نياز سازمان آموزش و پرورش , اكثر دارندگان مدرك ليسانس مي توانند به عنوان دبير در مدارس مشغول بكار شوند.
رقابت كاري در ميان دارندگان مدرك فوق ليسانس و در امور تحقيقي و نظري بسيار با لاست . از آنجايي كه اكثر مشاغل دانشگاهي در اختيار دارندگان مدرك PHDاست , لذا بسياري از فارغ التحصيلان رشته رياضي , بدنبال استخدام در مشاغل دولتي يا صنعتي مي باشند.

منابع:

پرویز شهریاری
لوباچفسكی، هندسه نااقلیدسی»، تالیف: و. كاگان، ترجمه پرویز شهریاری
هندسه های اقلیدسی و نااقلیدسی»، تالیف: ماروین جی. گرینبرگ، ترجمه محمدهادی شفیعیها
«هندسه لوباچفسكی» نوشته آ.س. اسموگورژفسكی، ترجمه احمد بیرشك
دایره المعارف بریتانیكا
مجله رشد برهان
سازمان آموزش و پرورش استان خراسان
-wikipedia , the free encydopedia
www.roshdmag.org
http://riazicenter.net
http://www.bedanid.com
www.knowclub.com
http://www.academist.ir



نظرات کاربران
ادامه نظرات
ارسال نظر شما

• با عنایت به اینکه نظرات و پیشنهادات شما کاربران گرامی در بهبود پایگاه تاثیر کاملا موثری ایفا می کند لذا خواهشمند است ما را از نظرات ارزنده ی خود محروم نفرمایید.
• نظر شما پس از بررسی و بازبینی توسط گروه مدیریت برای نمایش در سایت قرار داده می شود.
• نظرات کوتاه مثل "خوب بود" و "عالی بود" و... و نظرات تکراری تائید نمی شوند و امتیازی هم به آنها تعلق نخواهد گرفت.
• متن نظر شما میبایست حداکثر 1024 کاراکتر باشد.